|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
|
|
client = InferenceClient("01-ai/Yi-Coder-9B-Chat") |
|
|
|
|
|
model_path = "01-ai/Yi-Coder-9B-Chat" |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval() |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
use_local_model: bool, |
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for user, assistant in history: |
|
if user: |
|
messages.append({"role": "user", "content": user}) |
|
if assistant: |
|
messages.append({"role": "assistant", "content": assistant}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
if use_local_model: |
|
|
|
input_text = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) |
|
input_ids = tokenizer.encode(input_text, return_tensors="pt") |
|
input_ids = input_ids.to(model.device) |
|
|
|
with torch.no_grad(): |
|
output = model.generate( |
|
input_ids, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
yield response.split("assistant:")[-1].strip() |
|
else: |
|
|
|
response = "" |
|
for chunk in client.text_generation( |
|
"\n".join([f"{m['role']}: {m['content']}" for m in messages]), |
|
max_new_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
response += chunk |
|
yield response.split("assistant:")[-1].strip() |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox( |
|
value="Odpowiadasz w języku polskim. Jesteś Coder/Developer/Programista i tworzysz pełny kod.", |
|
label="Wiadomość systemowa" |
|
), |
|
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Maksymalna liczba nowych tokenów"), |
|
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperatura"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (próbkowanie nucleus)", |
|
), |
|
gr.Checkbox(label="Użyj lokalnego modelu", value=False), |
|
], |
|
title="Zaawansowany interfejs czatu AI", |
|
description="Czatuj z modelem AI, korzystając z Hugging Face Inference API lub lokalnego modelu.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |