YetiAI / app.py
patrol114's picture
Update app.py
c60e96c verified
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Inicjalizacja InferenceClient
client = InferenceClient("01-ai/Yi-Coder-9B-Chat")
# Inicjalizacja tokenizera i modelu
model_path = "01-ai/Yi-Coder-9B-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
use_local_model: bool,
):
# Przygotowanie wiadomości do kontekstu
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
if use_local_model:
# Użycie lokalnego modelu
input_text = "\n".join([f"{m['role']}: {m['content']}" for m in messages])
input_ids = tokenizer.encode(input_text, return_tensors="pt")
input_ids = input_ids.to(model.device)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
yield response.split("assistant:")[-1].strip()
else:
# Użycie Hugging Face Inference API
response = ""
for chunk in client.text_generation(
"\n".join([f"{m['role']}: {m['content']}" for m in messages]),
max_new_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
response += chunk
yield response.split("assistant:")[-1].strip()
# Tworzenie interfejsu Gradio
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="Odpowiadasz w języku polskim. Jesteś Coder/Developer/Programista i tworzysz pełny kod.",
label="Wiadomość systemowa"
),
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Maksymalna liczba nowych tokenów"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperatura"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (próbkowanie nucleus)",
),
gr.Checkbox(label="Użyj lokalnego modelu", value=False),
],
title="Zaawansowany interfejs czatu AI",
description="Czatuj z modelem AI, korzystając z Hugging Face Inference API lub lokalnego modelu.",
)
if __name__ == "__main__":
demo.launch()