Spaces:
Running
Running
from app.tapex import execute_query | |
import gradio as gr | |
def main(): | |
description = "Querying a csv using TAPEX model. You can ask a question about tabular data. TAPAS model " \ | |
"will produce the result. Finetuned TAPEX model runs on max 5000 rows and 20 columns data. " \ | |
"A sample data of shopify store sales is provided" | |
article = "<p style='text-align: center'><a href='https://unscrambl.com/' target='_blank'>Unscrambl</a> | <a href='https://huggingface.co/google/tapas-base-finetuned-wtq' target='_blank'>TAPAS Model</a></p><center><img src='https://visitor-badge.glitch.me/badge?page_id=abaranovskij_tablequery' alt='visitor badge'></center>" | |
iface = gr.Interface(fn=execute_query, | |
inputs=[gr.Textbox(label="Search query"), | |
gr.File(label="CSV file")], | |
outputs=[gr.JSON(label="Result"), | |
gr.Dataframe(label="All data")], | |
examples=[ | |
["What is the highest order_amount?", "shopify.csv"], | |
["Which user_id has the highest order_amount?", "shopify.csv"], | |
["Which payment method was used the most?", "shopify.csv"] | |
], | |
title="Table Question Answering (TAPEX)", | |
description=description, | |
article=article, | |
allow_flagging='never') | |
# Use this config when running on Docker | |
# iface.launch(server_name="0.0.0.0", server_port=7000) | |
iface.launch(enable_queue=True) | |
if __name__ == "__main__": | |
main() |