codelion commited on
Commit
86d1445
·
verified ·
1 Parent(s): e47e30b

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +66 -0
  2. github-repo-analyzer.py +681 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import time
4
+ import markdown
5
+ from github_repo_analyzer import main as analyze_repo, get_repo_info
6
+
7
+ # Emojis and fun statements for progress updates
8
+ PROGRESS_STEPS = [
9
+ ("🕵️‍♂️", "Investigating the GitHub realm..."),
10
+ ("🧬", "Decoding repository DNA..."),
11
+ ("🐛", "Hunting for bugs and features..."),
12
+ ("🔍", "Examining pull request tea leaves..."),
13
+ ("🧠", "Activating AI brain cells..."),
14
+ ("📝", "Crafting the legendary report..."),
15
+ ]
16
+
17
+ def analyze_github_repo(repo_input, github_token=None):
18
+ if github_token:
19
+ os.environ["GITHUB_TOKEN"] = github_token
20
+
21
+ progress_html = ""
22
+ yield progress_html, "" # Initial empty output
23
+
24
+ for emoji, message in PROGRESS_STEPS:
25
+ progress_html += f"<p>{emoji} {message}</p>"
26
+ yield progress_html, ""
27
+ time.sleep(1) # Simulate work being done
28
+
29
+ try:
30
+ owner, repo_name = get_repo_info(repo_input)
31
+ max_issues = 10
32
+ max_prs = 10
33
+
34
+ report = analyze_repo(repo_input, max_issues, max_prs)
35
+
36
+ # Convert markdown to HTML
37
+ html_report = markdown.markdown(report)
38
+
39
+ return progress_html + "<p>✅ Analysis complete!</p>", html_report
40
+ except Exception as e:
41
+ error_message = f"<p>❌ An error occurred: {str(e)}</p>"
42
+ return progress_html + error_message, ""
43
+
44
+ # Define the Gradio interface
45
+ with gr.Blocks() as app:
46
+ gr.Markdown("# GitHub Repository Analyzer")
47
+
48
+ repo_input = gr.Textbox(label="Enter GitHub Repository Slug or URL")
49
+
50
+ with gr.Accordion("Advanced Settings", open=False):
51
+ github_token = gr.Textbox(label="GitHub Token (optional)", type="password")
52
+
53
+ analyze_button = gr.Button("Analyze Repository")
54
+
55
+ progress_output = gr.HTML(label="Progress")
56
+ report_output = gr.HTML(label="Analysis Report")
57
+
58
+ analyze_button.click(
59
+ analyze_github_repo,
60
+ inputs=[repo_input, github_token],
61
+ outputs=[progress_output, report_output],
62
+ )
63
+
64
+ # Launch the app
65
+ if __name__ == "__main__":
66
+ app.launch()
github-repo-analyzer.py ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import tempfile
4
+ import shutil
5
+ from urllib.parse import urlparse
6
+ import requests
7
+ from github import Github
8
+ from git import Repo
9
+ import anthropic
10
+ from collections import defaultdict
11
+ import time
12
+ import numpy as np
13
+ from sklearn.feature_extraction.text import TfidfVectorizer
14
+ from sklearn.cluster import KMeans
15
+ from sklearn.metrics.pairwise import cosine_similarity
16
+ import subprocess
17
+ import json
18
+ from pathlib import Path
19
+ import traceback
20
+ import argparse
21
+
22
+ def run_semgrep(repo_path):
23
+ try:
24
+ result = subprocess.run(
25
+ ["semgrep", "--config", "auto", "--json", repo_path],
26
+ capture_output=True,
27
+ text=True,
28
+ check=True
29
+ )
30
+ return json.loads(result.stdout)
31
+ except subprocess.CalledProcessError as e:
32
+ print(f"Semgrep error: {e}")
33
+ return None
34
+ except json.JSONDecodeError:
35
+ print("Failed to parse Semgrep output")
36
+ return None
37
+
38
+ def parse_llm_response(response):
39
+ try:
40
+ return json.loads(response)
41
+ except json.JSONDecodeError:
42
+ print(f"Warning: Failed to parse LLM response as JSON. Response: {response[:100]}...")
43
+ return []
44
+
45
+ def get_repo_info(input_str):
46
+ if input_str.startswith("http") or input_str.startswith("https"):
47
+ parsed_url = urlparse(input_str)
48
+ path_parts = parsed_url.path.strip("/").split("/")
49
+ return path_parts[0], path_parts[1]
50
+ else:
51
+ return input_str.split("/")
52
+
53
+ def clone_repo(owner, repo_name, temp_dir):
54
+ repo_url = f"https://github.com/{owner}/{repo_name}.git"
55
+ Repo.clone_from(repo_url, temp_dir)
56
+ return temp_dir
57
+
58
+ def analyze_code(repo_path):
59
+ file_types = defaultdict(int)
60
+ file_contents = {}
61
+ for root, _, files in os.walk(repo_path):
62
+ for file in files:
63
+ file_path = os.path.join(root, file)
64
+ _, ext = os.path.splitext(file)
65
+ file_types[ext] += 1
66
+
67
+ if ext in ['.py', '.js', '.java', '.cpp', '.cs', '.go', '.rb', '.php', 'ts', 'tsx', 'jsx']:
68
+ with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
69
+ file_contents[file_path] = f.read()
70
+
71
+ semgrep_results = run_semgrep(repo_path)
72
+
73
+ return {
74
+ "file_types": dict(file_types),
75
+ "file_contents": file_contents,
76
+ "semgrep_results": semgrep_results
77
+ }
78
+
79
+ def analyze_issues(github_repo, max_issues):
80
+ closed_issues = []
81
+ open_issues = []
82
+ for issue in github_repo.get_issues(state="all")[:max_issues]:
83
+ issue_data = {
84
+ "number": issue.number,
85
+ "title": issue.title,
86
+ "body": issue.body,
87
+ "state": issue.state,
88
+ "created_at": issue.created_at.isoformat(),
89
+ "closed_at": issue.closed_at.isoformat() if issue.closed_at else None,
90
+ "comments": []
91
+ }
92
+ for comment in issue.get_comments():
93
+ issue_data["comments"].append({
94
+ "body": comment.body,
95
+ "created_at": comment.created_at.isoformat()
96
+ })
97
+ if issue.state == "closed":
98
+ closed_issues.append(issue_data)
99
+ else:
100
+ open_issues.append(issue_data)
101
+ time.sleep(0.5) # Rate limiting
102
+
103
+ # Cluster and filter closed issues
104
+ if closed_issues:
105
+ filtered_closed_issues = cluster_and_filter_items(closed_issues, n_clusters=min(5, len(closed_issues)), n_items=min(10, len(closed_issues)))
106
+ else:
107
+ filtered_closed_issues = []
108
+
109
+ return {
110
+ 'closed_issues': closed_issues,
111
+ 'open_issues': open_issues,
112
+ 'filtered_closed_issues': filtered_closed_issues
113
+ }
114
+
115
+ def analyze_pull_requests(github_repo, max_prs):
116
+ closed_prs = []
117
+ open_prs = []
118
+ for pr in github_repo.get_pulls(state="all")[:max_prs]:
119
+ pr_data = {
120
+ "number": pr.number,
121
+ "title": pr.title,
122
+ "body": pr.body,
123
+ "state": pr.state,
124
+ "created_at": pr.created_at.isoformat(),
125
+ "closed_at": pr.closed_at.isoformat() if pr.closed_at else None,
126
+ "comments": [],
127
+ "diff": pr.get_files()
128
+ }
129
+ for comment in pr.get_comments():
130
+ pr_data["comments"].append({
131
+ "body": comment.body,
132
+ "created_at": comment.created_at.isoformat()
133
+ })
134
+ if pr.state == "closed":
135
+ closed_prs.append(pr_data)
136
+ else:
137
+ open_prs.append(pr_data)
138
+ time.sleep(0.5) # Rate limiting
139
+
140
+ # Cluster and filter closed PRs
141
+ if closed_prs:
142
+ filtered_closed_prs = cluster_and_filter_items(closed_prs, n_clusters=min(5, len(closed_prs)), n_items=min(10, len(closed_prs)))
143
+ else:
144
+ filtered_closed_prs = []
145
+
146
+ return {
147
+ 'closed_prs': closed_prs,
148
+ 'open_prs': open_prs,
149
+ 'filtered_closed_prs': filtered_closed_prs
150
+ }
151
+
152
+ def call_llm(client, prompt, model="claude-3-5-sonnet-20240620", max_tokens=4096):
153
+ message = client.messages.create(
154
+ max_tokens=max_tokens,
155
+ model=model,
156
+ messages=[
157
+ {"role": "user", "content": prompt}
158
+ ]
159
+ )
160
+ return message.content[0].text
161
+
162
+ def safe_call_llm(client, prompt, retries=3):
163
+ for attempt in range(retries):
164
+ try:
165
+ response = call_llm(client, prompt)
166
+ return parse_llm_response(response)
167
+ except Exception as e:
168
+ print(f"Error in LLM call (attempt {attempt + 1}/{retries}): {str(e)}")
169
+ if attempt == retries - 1:
170
+ print("All retries failed. Returning empty list.")
171
+ return []
172
+ return []
173
+
174
+ def parse_llm_response(response):
175
+ try:
176
+ # First, try to parse the entire response as JSON
177
+ return json.loads(response)
178
+ except json.JSONDecodeError:
179
+ # If that fails, try to extract JSON from the response
180
+ try:
181
+ start = response.index('[')
182
+ end = response.rindex(']') + 1
183
+ json_str = response[start:end]
184
+ return json.loads(json_str)
185
+ except (ValueError, json.JSONDecodeError):
186
+ print(f"Warning: Failed to parse LLM response as JSON. Response: {response[:100]}...")
187
+ return []
188
+
189
+ def cluster_and_filter_items(items, n_clusters=5, n_items=10):
190
+ # Combine title and body for text analysis
191
+ texts = [f"{item['title']} {item['body']}" for item in items]
192
+
193
+ # Create TF-IDF vectors
194
+ vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
195
+ tfidf_matrix = vectorizer.fit_transform(texts)
196
+
197
+ # Perform clustering
198
+ kmeans = KMeans(n_clusters=min(n_clusters, len(items)))
199
+ kmeans.fit(tfidf_matrix)
200
+
201
+ # Get cluster centers
202
+ cluster_centers = kmeans.cluster_centers_
203
+
204
+ # Find items closest to cluster centers
205
+ filtered_items = []
206
+ for i in range(min(n_clusters, len(items))):
207
+ cluster_items = [item for item, label in zip(items, kmeans.labels_) if label == i]
208
+ cluster_vectors = tfidf_matrix[kmeans.labels_ == i]
209
+
210
+ # Calculate similarities to cluster center
211
+ similarities = cosine_similarity(cluster_vectors, cluster_centers[i].reshape(1, -1)).flatten()
212
+
213
+ # Sort items by similarity and select top ones
214
+ sorted_items = [x for _, x in sorted(zip(similarities, cluster_items), key=lambda pair: pair[0], reverse=True)]
215
+ filtered_items.extend(sorted_items[:min(n_items // n_clusters, len(sorted_items))])
216
+
217
+ return filtered_items
218
+
219
+ def safe_filter_open_items(open_items, closed_patterns, n_items=10):
220
+ try:
221
+ # Combine title and body for text analysis
222
+ open_texts = [f"{item.get('title', '')} {item.get('body', '')}" for item in open_items]
223
+ pattern_texts = [f"{pattern.get('theme', '')} {pattern.get('description', '')}" for pattern in closed_patterns]
224
+
225
+ if not open_texts or not pattern_texts:
226
+ print("Warning: No open items or closed patterns to analyze.")
227
+ return []
228
+
229
+ # Create TF-IDF vectors
230
+ vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
231
+ tfidf_matrix = vectorizer.fit_transform(open_texts + pattern_texts)
232
+
233
+ # Split the matrix into open items and patterns
234
+ open_vectors = tfidf_matrix[:len(open_items)]
235
+ pattern_vectors = tfidf_matrix[len(open_items):]
236
+
237
+ # Calculate similarities between open items and patterns
238
+ similarities = cosine_similarity(open_vectors, pattern_vectors)
239
+
240
+ # Calculate the average similarity for each open item
241
+ avg_similarities = np.mean(similarities, axis=1)
242
+
243
+ # Sort open items by average similarity and select top ones
244
+ sorted_items = [x for _, x in sorted(zip(avg_similarities, open_items), key=lambda pair: pair[0], reverse=True)]
245
+
246
+ return sorted_items[:n_items]
247
+ except Exception as e:
248
+ print(f"Error in filtering open items: {str(e)}")
249
+ traceback.print_exc()
250
+ return open_items[:n_items] # Return first n_items if filtering fails
251
+
252
+ def filter_open_items(open_items, closed_patterns, n_items=10):
253
+ # Combine title and body for text analysis
254
+ open_texts = [f"{item['title']} {item['body']}" for item in open_items]
255
+ pattern_texts = [f"{pattern.get('theme', '')} {pattern.get('description', '')}" for pattern in closed_patterns]
256
+
257
+ # Create TF-IDF vectors
258
+ vectorizer = TfidfVectorizer(stop_words='english', max_features=1000)
259
+ tfidf_matrix = vectorizer.fit_transform(open_texts + pattern_texts)
260
+
261
+ # Split the matrix into open items and patterns
262
+ open_vectors = tfidf_matrix[:len(open_items)]
263
+ pattern_vectors = tfidf_matrix[len(open_items):]
264
+
265
+ # Calculate similarities between open items and patterns
266
+ similarities = cosine_similarity(open_vectors, pattern_vectors)
267
+
268
+ # Calculate the average similarity for each open item
269
+ avg_similarities = np.mean(similarities, axis=1)
270
+
271
+ # Sort open items by average similarity and select top ones
272
+ sorted_items = [x for _, x in sorted(zip(avg_similarities, open_items), key=lambda pair: pair[0], reverse=True)]
273
+
274
+ return sorted_items[:n_items]
275
+
276
+ def llm_analyze_closed_items(client, items, item_type):
277
+ prompt = f"""
278
+ Analyze the following closed GitHub {item_type}:
279
+
280
+ {items}
281
+
282
+ Based on these closed {item_type}, identify:
283
+ 1. Common themes or recurring patterns
284
+ 2. Areas where automation could streamline {item_type} management
285
+ 3. Potential LLM-assisted workflows to improve the {item_type} process
286
+ 4. Do not return anything other than the expected JSON object
287
+
288
+ For each identified pattern or theme, provide:
289
+ - A short title or theme name
290
+ - A brief description of the pattern
291
+ - Potential LLM-assisted solutions or workflows
292
+
293
+ Format your response as a list of JSON objects, like this:
294
+ [
295
+ {{
296
+ "theme": "Theme name",
297
+ "description": "Brief description of the pattern",
298
+ "llm_solution": "Potential LLM-assisted solution or workflow"
299
+ }},
300
+ ...
301
+ ]
302
+ """
303
+
304
+ return safe_call_llm(client, prompt)
305
+
306
+ def llm_analyze_open_items(client, open_items, closed_patterns, item_type, repo_url):
307
+ prompt = f"""
308
+ Consider the following patterns identified in closed {item_type}:
309
+
310
+ {closed_patterns}
311
+
312
+ Now, analyze these open {item_type} in light of the above patterns:
313
+
314
+ {open_items}
315
+
316
+ For each open {item_type}:
317
+ 1. Identify which pattern(s) it most closely matches
318
+ 2. Suggest specific LLM-assisted workflows or automations that could be applied, based on the matched patterns
319
+ 3. Explain how the suggested workflow would improve the handling of this {item_type}
320
+ 4. Include the {item_type} number in your response
321
+ 5. Do not return anything other than the expected JSON object
322
+
323
+ Format your response as a list of JSON objects, like this:
324
+ [
325
+ {{
326
+ "number": {item_type} number,
327
+ "matched_patterns": ["Pattern 1", "Pattern 2"],
328
+ "suggested_workflow": "Description of the suggested LLM-assisted workflow",
329
+ "expected_improvement": "Explanation of how this would improve the {item_type} handling"
330
+ }},
331
+ ...
332
+ ]
333
+ """
334
+
335
+ return safe_call_llm(client, prompt)
336
+
337
+ def llm_analyze_issues(client, issues_data, repo_url):
338
+ filtered_closed_issues = issues_data['filtered_closed_issues']
339
+ all_closed_issues = issues_data['closed_issues']
340
+ open_issues = issues_data['open_issues']
341
+
342
+ closed_patterns = llm_analyze_closed_items(client, filtered_closed_issues, "issues")
343
+ relevant_open_issues = safe_filter_open_items(open_issues, closed_patterns, n_items=10)
344
+ open_issues_analysis = llm_analyze_open_items(client, relevant_open_issues, closed_patterns, "issues", repo_url)
345
+
346
+ summary_prompt = f"""
347
+ Summarize the analysis of closed and open issues:
348
+
349
+ Closed Issues Patterns:
350
+ {closed_patterns}
351
+
352
+ Open Issues Analysis:
353
+ {open_issues_analysis}
354
+
355
+ Provide a concise summary of:
356
+ 1. Key patterns identified in closed issues
357
+ 2. Most promising LLM-assisted workflows for handling open issues
358
+ 3. Overall recommendations for improving issue management in this repository
359
+ 4. For each suggested workflow, include the number of an open issue where it could be applied
360
+ 5. Do not return anything other than the expected JSON object
361
+
362
+ Format your response as a JSON object with the following structure:
363
+ {{
364
+ "key_patterns": ["pattern1", "pattern2", ...],
365
+ "promising_workflows": [
366
+ {{
367
+ "workflow": "Description of the workflow",
368
+ "applicable_issue": issue_number
369
+ }},
370
+ ...
371
+ ],
372
+ "overall_recommendations": ["recommendation1", "recommendation2", ...]
373
+ }}
374
+
375
+ Total number of closed issues analyzed: {len(all_closed_issues)}
376
+ Total number of open issues: {len(open_issues)}
377
+ """
378
+
379
+ summary = safe_call_llm(client, summary_prompt)
380
+
381
+ return {
382
+ 'closed_patterns': closed_patterns,
383
+ 'open_issues_analysis': open_issues_analysis,
384
+ 'summary': summary
385
+ }
386
+
387
+ def llm_analyze_prs(client, prs_data, repo_url):
388
+ filtered_closed_prs = prs_data['filtered_closed_prs']
389
+ all_closed_prs = prs_data['closed_prs']
390
+ open_prs = prs_data['open_prs']
391
+
392
+ closed_patterns = llm_analyze_closed_items(client, filtered_closed_prs, "pull requests")
393
+ relevant_open_prs = safe_filter_open_items(open_prs, closed_patterns, n_items=10)
394
+ open_prs_analysis = llm_analyze_open_items(client, relevant_open_prs, closed_patterns, "pull requests", repo_url)
395
+
396
+ summary_prompt = f"""
397
+ Summarize the analysis of closed and open pull requests:
398
+
399
+ Closed PRs Patterns:
400
+ {closed_patterns}
401
+
402
+ Open PRs Analysis:
403
+ {open_prs_analysis}
404
+
405
+ Provide a concise summary of:
406
+ 1. Key patterns identified in closed pull requests
407
+ 2. Most promising LLM-assisted workflows for handling open pull requests
408
+ 3. Overall recommendations for improving the PR process in this repository
409
+ 4. For each suggested workflow, include the number of an open PR where it could be applied
410
+ 5. Do not return anything other than the expected JSON object
411
+
412
+ Format your response as a JSON object with the following structure:
413
+ {{
414
+ "key_patterns": ["pattern1", "pattern2", ...],
415
+ "promising_workflows": [
416
+ {{
417
+ "workflow": "Description of the workflow",
418
+ "applicable_pr": pr_number
419
+ }},
420
+ ...
421
+ ],
422
+ "overall_recommendations": ["recommendation1", "recommendation2", ...]
423
+ }}
424
+
425
+ Total number of closed pull requests analyzed: {len(all_closed_prs)}
426
+ Total number of open pull requests: {len(open_prs)}
427
+ """
428
+
429
+ summary = safe_call_llm(client, summary_prompt)
430
+
431
+ return {
432
+ 'closed_patterns': closed_patterns,
433
+ 'open_prs_analysis': open_prs_analysis,
434
+ 'summary': summary
435
+ }
436
+
437
+ def llm_analyze_code(client, code_analysis):
438
+ semgrep_summary = "No Semgrep results available."
439
+ if code_analysis['semgrep_results']:
440
+ findings = code_analysis['semgrep_results'].get('results', [])
441
+ semgrep_summary = f"Semgrep found {len(findings)} potential issues:"
442
+ for finding in findings[:10]: # Limit to 10 findings to avoid token limits
443
+ semgrep_summary += f"\n- {finding['check_id']} in {finding['path']}: {finding['extra']['message']}"
444
+
445
+ file_contents_summary = ""
446
+ for file_path, content in code_analysis['file_contents'].items():
447
+ file_contents_summary += f"\n\nFile: {file_path}\nContent:\n{content[:1000]}..." # Limit content to avoid token limits
448
+
449
+ prompt = f"""
450
+ Analyze the following code structure, content, and Semgrep results:
451
+
452
+ File types: {code_analysis['file_types']}
453
+
454
+ Semgrep Analysis:
455
+ {semgrep_summary}
456
+
457
+ File Contents Summary:
458
+ {file_contents_summary}
459
+
460
+ Based on this information, provide an analysis covering:
461
+ 1. Patterns in the codebase
462
+ 2. Best practices being followed or missing
463
+ 3. Areas for improvement
464
+ 4. Potential security vulnerabilities or bugs (based on Semgrep results)
465
+ 5. Opportunities for LLM-assisted automation in coding tasks
466
+
467
+ For LLM-assisted opportunities, consider tasks like code review, bug fixing, test generation, or documentation.
468
+
469
+ Respond ONLY with a JSON object in the following format:
470
+ {{
471
+ "patterns": ["pattern1", "pattern2", ...],
472
+ "best_practices": {{
473
+ "followed": ["practice1", "practice2", ...],
474
+ "missing": ["practice1", "practice2", ...]
475
+ }},
476
+ "areas_for_improvement": ["area1", "area2", ...],
477
+ "potential_vulnerabilities": [
478
+ {{
479
+ "description": "Description of the vulnerability",
480
+ "file_path": "Path to the affected file",
481
+ "severity": "High/Medium/Low"
482
+ }},
483
+ ...
484
+ ],
485
+ "llm_opportunities": [
486
+ {{
487
+ "task": "Description of the LLM-assisted task",
488
+ "file_path": "Path to the relevant file",
489
+ "improvement": "How LLM assistance would help"
490
+ }},
491
+ ...
492
+ ]
493
+ }}
494
+
495
+ Ensure your response is a valid JSON object and nothing else.
496
+ """
497
+
498
+ return safe_call_llm(client, prompt)
499
+
500
+ def llm_synthesize_findings(client, code_analysis, issues_analysis, pr_analysis):
501
+ prompt = f"""
502
+ Synthesize the following analyses of a GitHub repository:
503
+
504
+ Code Analysis:
505
+ {code_analysis}
506
+
507
+ Issues Analysis:
508
+ {issues_analysis}
509
+
510
+ Pull Requests Analysis:
511
+ {pr_analysis}
512
+
513
+ Based on these analyses:
514
+ 1. Summarize the key findings across all areas (code, issues, and PRs)
515
+ 2. Identify the top 3-5 most promising opportunities for LLM-assisted workflows
516
+ 3. For each opportunity, provide a specific example of how it could be implemented and the potential benefits
517
+ 4. Suggest any additional areas of investigation or analysis that could provide further insights
518
+ """
519
+
520
+ return call_llm(client, prompt, max_tokens=8192)
521
+
522
+ def generate_report(repo_info, code_analysis, issues_analysis, pr_analysis, final_analysis):
523
+ repo_url = f"https://github.com/{repo_info['owner']}/{repo_info['repo_name']}"
524
+
525
+ report = f"""# LLM-Assisted Workflow Analysis for {repo_info['owner']}/{repo_info['repo_name']}
526
+
527
+ ## Repository Overview
528
+ - Owner: {repo_info['owner']}
529
+ - Repository: {repo_info['repo_name']}
530
+ - URL: {repo_url}
531
+ - File types: {code_analysis.get('file_types', 'N/A')}
532
+
533
+ ## Code Analysis
534
+ """
535
+
536
+ if isinstance(code_analysis.get('llm_analysis'), dict):
537
+ code_llm_analysis = code_analysis['llm_analysis']
538
+
539
+ report += "### Patterns Identified\n"
540
+ for pattern in code_llm_analysis.get('patterns', []):
541
+ report += f"- {pattern}\n"
542
+
543
+ report += "\n### Best Practices\n"
544
+ report += "#### Followed:\n"
545
+ for practice in code_llm_analysis.get('best_practices', {}).get('followed', []):
546
+ report += f"- {practice}\n"
547
+ report += "\n#### Missing:\n"
548
+ for practice in code_llm_analysis.get('best_practices', {}).get('missing', []):
549
+ report += f"- {practice}\n"
550
+
551
+ report += "\n### Areas for Improvement\n"
552
+ for area in code_llm_analysis.get('areas_for_improvement', []):
553
+ report += f"- {area}\n"
554
+
555
+ report += "\n### Potential Vulnerabilities\n"
556
+ for vuln in code_llm_analysis.get('potential_vulnerabilities', []):
557
+ report += f"- {vuln['description']} in `{vuln['file_path']}` (Severity: {vuln['severity']})\n"
558
+
559
+ report += "\n### LLM-Assisted Coding Opportunities\n"
560
+ for opp in code_llm_analysis.get('llm_opportunities', []):
561
+ report += f"- **Task:** {opp['task']}\n"
562
+ report += f" - **File:** `{opp['file_path']}`\n"
563
+ report += f" - **Improvement:** {opp['improvement']}\n\n"
564
+ else:
565
+ report += "No structured code analysis available.\n"
566
+
567
+ report += "\n## Issues Analysis\n"
568
+
569
+ if isinstance(issues_analysis.get('summary'), dict):
570
+ report += "### Key Patterns in Issues\n"
571
+ for pattern in issues_analysis['summary'].get('key_patterns', ['No key patterns identified.']):
572
+ report += f"- {pattern}\n"
573
+
574
+ report += "\n### Promising LLM-Assisted Workflows for Issues\n"
575
+ for workflow in issues_analysis['summary'].get('promising_workflows', []):
576
+ report += f"- **Workflow:** {workflow['workflow']}\n"
577
+ report += f" - **Example Issue:** [{workflow['applicable_issue']}]({repo_url}/issues/{workflow['applicable_issue']})\n\n"
578
+
579
+ report += "### Overall Recommendations for Issue Management\n"
580
+ for rec in issues_analysis['summary'].get('overall_recommendations', ['No recommendations available.']):
581
+ report += f"- {rec}\n"
582
+ else:
583
+ report += "No structured issues analysis available.\n"
584
+
585
+ report += "\n## Pull Requests Analysis\n"
586
+
587
+ if isinstance(pr_analysis.get('summary'), dict):
588
+ report += "### Key Patterns in Pull Requests\n"
589
+ for pattern in pr_analysis['summary'].get('key_patterns', ['No key patterns identified.']):
590
+ report += f"- {pattern}\n"
591
+
592
+ report += "\n### Promising LLM-Assisted Workflows for Pull Requests\n"
593
+ for workflow in pr_analysis['summary'].get('promising_workflows', []):
594
+ report += f"- **Workflow:** {workflow['workflow']}\n"
595
+ report += f" - **Example PR:** [{workflow['applicable_pr']}]({repo_url}/pull/{workflow['applicable_pr']})\n\n"
596
+
597
+ report += "### Overall Recommendations for PR Process\n"
598
+ for rec in pr_analysis['summary'].get('overall_recommendations', ['No recommendations available.']):
599
+ report += f"- {rec}\n"
600
+ else:
601
+ report += "No structured pull requests analysis available.\n"
602
+
603
+ report += f"\n## Synthesis and Recommendations\n{final_analysis}\n"
604
+
605
+ return report
606
+
607
+ def main(repo_input, max_issues, max_prs):
608
+ github_token = os.environ.get("GITHUB_TOKEN")
609
+ if not github_token:
610
+ print("Error: GITHUB_TOKEN environment variable not set.")
611
+ sys.exit(1)
612
+
613
+ anthropic_api_key = os.environ.get("ANTHROPIC_API_KEY")
614
+ if not anthropic_api_key:
615
+ print("Error: ANTHROPIC_API_KEY environment variable not set.")
616
+ sys.exit(1)
617
+
618
+ owner, repo_name = get_repo_info(repo_input)
619
+ repo_url = f"https://github.com/{owner}/{repo_name}"
620
+
621
+ g = Github(github_token)
622
+ github_repo = g.get_repo(f"{owner}/{repo_name}")
623
+
624
+ client = anthropic.Anthropic(api_key=anthropic_api_key)
625
+
626
+ with tempfile.TemporaryDirectory() as temp_dir:
627
+ try:
628
+ print(f"Cloning repository {owner}/{repo_name}...")
629
+ repo_path = clone_repo(owner, repo_name, temp_dir)
630
+
631
+ print("Analyzing code...")
632
+ code_analysis = analyze_code(repo_path)
633
+ code_analysis['llm_analysis'] = llm_analyze_code(client, code_analysis)
634
+
635
+ print(f"Analyzing issues (max {max_issues})...")
636
+ issues_data = analyze_issues(github_repo, max_issues)
637
+ issues_analysis = llm_analyze_issues(client, issues_data, repo_url)
638
+
639
+ print(f"Analyzing pull requests (max {max_prs})...")
640
+ prs_data = analyze_pull_requests(github_repo, max_prs)
641
+ pr_analysis = llm_analyze_prs(client, prs_data, repo_url)
642
+
643
+ print("Synthesizing findings...")
644
+ final_analysis = llm_synthesize_findings(
645
+ client,
646
+ code_analysis.get('llm_analysis', ''),
647
+ issues_analysis.get('summary', ''),
648
+ pr_analysis.get('summary', '')
649
+ )
650
+
651
+ repo_info = {
652
+ "owner": owner,
653
+ "repo_name": repo_name,
654
+ }
655
+
656
+ print("Generating report...")
657
+ report = generate_report(repo_info, code_analysis, issues_analysis, pr_analysis, final_analysis)
658
+
659
+ print("\nAnalysis Report:")
660
+ print(report)
661
+
662
+ # Save the report to a file
663
+ with open(f"{owner}_{repo_name}_analysis.md", "w") as f:
664
+ f.write(report)
665
+ print(f"\nReport saved to {owner}_{repo_name}_analysis.md")
666
+
667
+ except Exception as e:
668
+ print(f"An error occurred: {str(e)}")
669
+ traceback.print_exc()
670
+ finally:
671
+ print("Cleaning up...")
672
+
673
+ if __name__ == "__main__":
674
+ parser = argparse.ArgumentParser(description="Analyze a GitHub repository with limits on issues and PRs.")
675
+ parser.add_argument("repo", help="Repository slug (owner/repo) or URL")
676
+ parser.add_argument("--max_issues", type=int, default=10, help="Maximum number of issues to analyze")
677
+ parser.add_argument("--max_prs", type=int, default=10, help="Maximum number of pull requests to analyze")
678
+
679
+ args = parser.parse_args()
680
+
681
+ main(args.repo, args.max_issues, args.max_prs)