Parinthapat Pengpun
commited on
Commit
·
2b9f83a
1
Parent(s):
f4f4f9e
Nice
Browse files- __pycache__/app.cpython-39.pyc +0 -0
- app.py +229 -0
- requirements.txt +1 -0
__pycache__/app.cpython-39.pyc
ADDED
Binary file (6.93 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.datasets import fetch_20newsgroups
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from sklearn.linear_model import LogisticRegression, RidgeClassifier, SGDClassifier
|
7 |
+
from sklearn.metrics import accuracy_score
|
8 |
+
from sklearn.naive_bayes import ComplementNB
|
9 |
+
from sklearn.neighbors import KNeighborsClassifier, NearestCentroid
|
10 |
+
from sklearn.ensemble import RandomForestClassifier
|
11 |
+
from sklearn.svm import LinearSVC
|
12 |
+
from sklearn.utils.extmath import density
|
13 |
+
from time import time
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import matplotlib
|
16 |
+
from sklearn.metrics import ConfusionMatrixDisplay
|
17 |
+
import io
|
18 |
+
import base64
|
19 |
+
matplotlib.use('Agg') # set the backend to avoid GUI warning
|
20 |
+
|
21 |
+
|
22 |
+
all_categories = [
|
23 |
+
'alt.atheism',
|
24 |
+
'comp.graphics',
|
25 |
+
'comp.os.ms-windows.misc',
|
26 |
+
'comp.sys.ibm.pc.hardware',
|
27 |
+
'comp.sys.mac.hardware',
|
28 |
+
'comp.windows.x',
|
29 |
+
'misc.forsale',
|
30 |
+
'rec.autos',
|
31 |
+
'rec.motorcycles',
|
32 |
+
'rec.sport.baseball',
|
33 |
+
'rec.sport.hockey',
|
34 |
+
'sci.crypt',
|
35 |
+
'sci.electronics',
|
36 |
+
'sci.med',
|
37 |
+
'sci.space',
|
38 |
+
'soc.religion.christian',
|
39 |
+
'talk.politics.guns',
|
40 |
+
'talk.politics.mideast',
|
41 |
+
'talk.politics.misc',
|
42 |
+
'talk.religion.misc'
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
def size_mb(docs):
|
47 |
+
return sum(len(s.encode("utf-8")) for s in docs) / 1e6
|
48 |
+
|
49 |
+
|
50 |
+
def load_dataset(categories, verbose=False, remove=()):
|
51 |
+
"""Load and vectorize the 20 newsgroups dataset."""
|
52 |
+
|
53 |
+
data_train = fetch_20newsgroups(
|
54 |
+
subset="train",
|
55 |
+
categories=categories,
|
56 |
+
shuffle=True,
|
57 |
+
random_state=42,
|
58 |
+
remove=remove,
|
59 |
+
)
|
60 |
+
|
61 |
+
data_test = fetch_20newsgroups(
|
62 |
+
subset="test",
|
63 |
+
categories=categories,
|
64 |
+
shuffle=True,
|
65 |
+
random_state=42,
|
66 |
+
remove=remove,
|
67 |
+
)
|
68 |
+
|
69 |
+
# order of labels in `target_names` can be different from `categories`
|
70 |
+
target_names = data_train.target_names
|
71 |
+
|
72 |
+
# split target in a training set and a test set
|
73 |
+
y_train, y_test = data_train.target, data_test.target
|
74 |
+
|
75 |
+
# Extracting features from the training data using a sparse vectorizer
|
76 |
+
t0 = time()
|
77 |
+
vectorizer = TfidfVectorizer(
|
78 |
+
sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english"
|
79 |
+
)
|
80 |
+
X_train = vectorizer.fit_transform(data_train.data)
|
81 |
+
duration_train = time() - t0
|
82 |
+
|
83 |
+
# Extracting features from the test data using the same vectorizer
|
84 |
+
t0 = time()
|
85 |
+
X_test = vectorizer.transform(data_test.data)
|
86 |
+
duration_test = time() - t0
|
87 |
+
|
88 |
+
feature_names = vectorizer.get_feature_names_out()
|
89 |
+
|
90 |
+
if verbose:
|
91 |
+
|
92 |
+
# compute size of loaded data
|
93 |
+
data_train_size_mb = size_mb(data_train.data)
|
94 |
+
data_test_size_mb = size_mb(data_test.data)
|
95 |
+
|
96 |
+
print(
|
97 |
+
f"{len(data_train.data)} documents - "
|
98 |
+
f"{data_train_size_mb:.2f}MB (training set)"
|
99 |
+
)
|
100 |
+
print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)")
|
101 |
+
print(f"{len(target_names)} categories")
|
102 |
+
print(
|
103 |
+
f"vectorize training done in {duration_train:.3f}s "
|
104 |
+
f"at {data_train_size_mb / duration_train:.3f}MB/s"
|
105 |
+
)
|
106 |
+
print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}")
|
107 |
+
print(
|
108 |
+
f"vectorize testing done in {duration_test:.3f}s "
|
109 |
+
f"at {data_test_size_mb / duration_test:.3f}MB/s"
|
110 |
+
)
|
111 |
+
print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}")
|
112 |
+
|
113 |
+
return X_train, X_test, y_train, y_test, feature_names, target_names
|
114 |
+
|
115 |
+
def benchmark(clf, X_train, X_test, y_train, y_test):
|
116 |
+
print("_" * 80)
|
117 |
+
print("Training: ")
|
118 |
+
print(clf)
|
119 |
+
t0 = time()
|
120 |
+
clf.fit(X_train, y_train)
|
121 |
+
train_time = time() - t0
|
122 |
+
print(f"train time: {train_time:.3}s")
|
123 |
+
|
124 |
+
t0 = time()
|
125 |
+
pred = clf.predict(X_test)
|
126 |
+
test_time = time() - t0
|
127 |
+
print(f"test time: {test_time:.3}s")
|
128 |
+
|
129 |
+
score = accuracy_score(y_test, pred)
|
130 |
+
print(f"accuracy: {score:.3}")
|
131 |
+
|
132 |
+
if hasattr(clf, "coef_"):
|
133 |
+
print(f"dimensionality: {clf.coef_.shape[1]}")
|
134 |
+
print(f"density: {density(clf.coef_)}")
|
135 |
+
print()
|
136 |
+
|
137 |
+
print()
|
138 |
+
clf_descr = clf.__class__.__name__
|
139 |
+
return clf_descr, score, train_time, test_time
|
140 |
+
|
141 |
+
|
142 |
+
def run_experiment(categories, models):
|
143 |
+
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset(
|
144 |
+
categories, verbose=True
|
145 |
+
)
|
146 |
+
results = []
|
147 |
+
for clf, name in models:
|
148 |
+
print("=" * 80)
|
149 |
+
print(name)
|
150 |
+
results.append(benchmark(clf, X_train, X_test, y_train, y_test))
|
151 |
+
plot_feature_effects(clf, target_names, feature_names, X_train)
|
152 |
+
clf_names, score, training_time, test_time = [list(x) for x in zip(*results)]
|
153 |
+
|
154 |
+
training_time = np.array(training_time)
|
155 |
+
test_time = np.array(test_time)
|
156 |
+
|
157 |
+
fig, ax1 = plt.subplots(figsize=(10, 8))
|
158 |
+
ax1.scatter(score, training_time, s=60)
|
159 |
+
ax1.set(
|
160 |
+
title="Score-training time trade-off",
|
161 |
+
yscale="log",
|
162 |
+
xlabel="test accuracy",
|
163 |
+
ylabel="training time (s)",
|
164 |
+
)
|
165 |
+
|
166 |
+
fig, ax2 = plt.subplots(figsize=(10, 8))
|
167 |
+
ax2.scatter(score, test_time, s=60)
|
168 |
+
|
169 |
+
ax2.set(
|
170 |
+
title="Score-test time trade-off",
|
171 |
+
yscale="log",
|
172 |
+
xlabel="test accuracy",
|
173 |
+
ylabel="test time (s)",
|
174 |
+
)
|
175 |
+
|
176 |
+
for i, txt in enumerate(clf_names):
|
177 |
+
ax1.annotate(txt, (score[i], training_time[i]))
|
178 |
+
ax2.annotate(txt, (score[i], test_time[i]))
|
179 |
+
|
180 |
+
result_df = pd.DataFrame(
|
181 |
+
{"Model": clf_names, "Test Accuracy": score, "Training Time": training_time, "Test Time": test_time}
|
182 |
+
)
|
183 |
+
|
184 |
+
return result_df
|
185 |
+
|
186 |
+
def run_experiment_gradio():
|
187 |
+
models = [(LogisticRegression(C=5, max_iter=1000), "Logistic Regression"), (RidgeClassifier(alpha=1.0, solver="sparse_cg"), "Ridge Classifier"), (KNeighborsClassifier(n_neighbors=100), "kNN"), (RandomForestClassifier(), "Random Forest"), (LinearSVC(C=0.1, dual=False, max_iter=1000), "Linear SVC"), (SGDClassifier(loss="log_loss", alpha=1e-4, n_iter_no_change=3, early_stopping=True), "log-loss SGD"), (NearestCentroid(), "NearestCentroid"), (ComplementNB(alpha=0.1), "Complement naive Bayes")]
|
188 |
+
|
189 |
+
def run_model(model_names, categories):
|
190 |
+
results = []
|
191 |
+
print(model_names)
|
192 |
+
for model_name in model_names:
|
193 |
+
model = next((m[0] for m in models if str(m[0]) == model_name), None)
|
194 |
+
if model is None:
|
195 |
+
continue
|
196 |
+
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset(
|
197 |
+
categories, verbose=True
|
198 |
+
)
|
199 |
+
clf = model
|
200 |
+
clf_descr, score, train_time, test_time = benchmark(clf, X_train, X_test, y_train, y_test)
|
201 |
+
results.append({"Model": clf_descr, "Test Accuracy": score, "Training Time": train_time, "Test Time": test_time})
|
202 |
+
return pd.DataFrame(results)
|
203 |
+
|
204 |
+
category_options = [category for category in all_categories]
|
205 |
+
category_group = gr.inputs.CheckboxGroup(
|
206 |
+
label="Categories",
|
207 |
+
choices=category_options,
|
208 |
+
default=category_options[:5],
|
209 |
+
)
|
210 |
+
|
211 |
+
model_options = [model[0] for model in models]
|
212 |
+
model_dropdown = gr.inputs.CheckboxGroup(
|
213 |
+
choices=model_options,
|
214 |
+
label="Models",
|
215 |
+
)
|
216 |
+
|
217 |
+
interface = gr.Interface(
|
218 |
+
fn=run_model,
|
219 |
+
inputs=[model_dropdown, category_group],
|
220 |
+
outputs="dataframe",
|
221 |
+
title="20 Newsgroups Text Classification Experiment",
|
222 |
+
description="Select one or more categories and one or more models, then click 'Run Experiment' to evaluate them on the 20 newsgroups text classification task.",
|
223 |
+
allow_flagging=False,
|
224 |
+
analytics_enabled=False
|
225 |
+
)
|
226 |
+
|
227 |
+
return interface
|
228 |
+
|
229 |
+
run_experiment_gradio().launch(quiet=False)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.2.2
|