import streamlit as st import pickle import re import nltk nltk.download('punkt') nltk.download('stopwords') #loading models clf = pickle.load(open('clf.pkl','rb')) tfidfd = pickle.load(open('tfidf.pkl','rb')) def clean_resume(resume_text): clean_text = re.sub('http\S+\s*', ' ', resume_text) clean_text = re.sub('RT|cc', ' ', clean_text) clean_text = re.sub('#\S+', '', clean_text) clean_text = re.sub('@\S+', ' ', clean_text) clean_text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', clean_text) clean_text = re.sub(r'[^\x00-\x7f]', r' ', clean_text) clean_text = re.sub('\s+', ' ', clean_text) return clean_text # web app def main(): st.title("Resume Screening App") uploaded_file = st.file_uploader('Upload Resume', type=['txt','pdf']) if uploaded_file is not None: try: resume_bytes = uploaded_file.read() resume_text = resume_bytes.decode('utf-8') except UnicodeDecodeError: # If UTF-8 decoding fails, try decoding with 'latin-1' resume_text = resume_bytes.decode('latin-1') cleaned_resume = clean_resume(resume_text) input_features = tfidfd.transform([cleaned_resume]) prediction_id = clf.predict(input_features)[0] st.write(prediction_id) # Map category ID to category name category_mapping = { 15: "Java Developer", 23: "Testing", 8: "AI/ML Engineer", 20: "Python Developer", 24: "Web Designing", 12: "HR", 13: "Hadoop", 3: "Blockchain", 10: "ETL Developer", 18: "Operations Manager", 6: "Data Science", 22: "Sales", 16: "Mechanical Engineer", 1: "Arts", 7: "Database", 11: "Electrical Engineering", 14: "Health and fitness", 19: "PMO", 4: "Business Analyst", 9: "DotNet Developer", 2: "Automation Testing", 17: "Network Security Engineer", 21: "SAP Developer", 5: "Civil Engineer", 0: "Advocate", } category_name = category_mapping.get(prediction_id, "Unknown") st.write("Predicted Category:", category_name) # python main if __name__ == "__main__": main()