from urlextract import URLExtract from wordcloud import WordCloud import pandas as pd from collections import Counter import emoji extract = URLExtract() def fetch_stats(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] # fetch the number of messages num_messages = df.shape[0] # fetch the total number of words words = [] for message in df['message']: words.extend(message.split()) # fetch number of media messages num_media_messages = df[df['message'] == '\n'].shape[0] # fetch number of links shared links = [] for message in df['message']: links.extend(extract.find_urls(message)) return num_messages,len(words),num_media_messages,len(links) def most_busy_users(df): x = df['user'].value_counts().head() df = round((df['user'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename( columns={'index': 'name', 'user': 'percent'}) return x,df def create_wordcloud(selected_user,df): f = open('stop_hinglish.txt', 'r') stop_words = f.read() if selected_user != 'Overall': df = df[df['user'] == selected_user] temp = df[df['user'] != 'group_notification'] temp = temp[temp['message'] != '\n'] def remove_stop_words(message): y = [] for word in message.lower().split(): if word not in stop_words: y.append(word) return " ".join(y) wc = WordCloud(width=500,height=500,min_font_size=10,background_color='white') temp['message'] = temp['message'].apply(remove_stop_words) df_wc = wc.generate(temp['message'].str.cat(sep=" ")) return df_wc def most_common_words(selected_user,df): f = open('stop_hinglish.txt','r') stop_words = f.read() if selected_user != 'Overall': df = df[df['user'] == selected_user] temp = df[df['user'] != 'group_notification'] temp = temp[temp['message'] != '\n'] words = [] for message in temp['message']: for word in message.lower().split(): if word not in stop_words: words.append(word) most_common_df = pd.DataFrame(Counter(words).most_common(20)) return most_common_df def emoji_helper(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] emojis = [] for message in df['message']: emojis.extend([c for c in message if c in emoji.UNICODE_EMOJI['en']]) emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis)))) return emoji_df def monthly_timeline(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] timeline = df.groupby(['year', 'month_num', 'month']).count()['message'].reset_index() time = [] for i in range(timeline.shape[0]): time.append(timeline['month'][i] + "-" + str(timeline['year'][i])) timeline['time'] = time return timeline def daily_timeline(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] daily_timeline = df.groupby('only_date').count()['message'].reset_index() return daily_timeline def week_activity_map(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] return df['day_name'].value_counts() def month_activity_map(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] return df['month'].value_counts() def activity_heatmap(selected_user,df): if selected_user != 'Overall': df = df[df['user'] == selected_user] user_heatmap = df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0) return user_heatmap