Spaces:
Sleeping
Sleeping
Create helper.py
Browse files
helper.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from urlextract import URLExtract
|
2 |
+
from wordcloud import WordCloud
|
3 |
+
import pandas as pd
|
4 |
+
from collections import Counter
|
5 |
+
import emoji
|
6 |
+
|
7 |
+
extract = URLExtract()
|
8 |
+
|
9 |
+
def fetch_stats(selected_user,df):
|
10 |
+
|
11 |
+
if selected_user != 'Overall':
|
12 |
+
df = df[df['user'] == selected_user]
|
13 |
+
|
14 |
+
# fetch the number of messages
|
15 |
+
num_messages = df.shape[0]
|
16 |
+
|
17 |
+
# fetch the total number of words
|
18 |
+
words = []
|
19 |
+
for message in df['message']:
|
20 |
+
words.extend(message.split())
|
21 |
+
|
22 |
+
# fetch number of media messages
|
23 |
+
num_media_messages = df[df['message'] == '<Media omitted>\n'].shape[0]
|
24 |
+
|
25 |
+
# fetch number of links shared
|
26 |
+
links = []
|
27 |
+
for message in df['message']:
|
28 |
+
links.extend(extract.find_urls(message))
|
29 |
+
|
30 |
+
return num_messages,len(words),num_media_messages,len(links)
|
31 |
+
|
32 |
+
def most_busy_users(df):
|
33 |
+
x = df['user'].value_counts().head()
|
34 |
+
df = round((df['user'].value_counts() / df.shape[0]) * 100, 2).reset_index().rename(
|
35 |
+
columns={'index': 'name', 'user': 'percent'})
|
36 |
+
return x,df
|
37 |
+
|
38 |
+
def create_wordcloud(selected_user,df):
|
39 |
+
|
40 |
+
f = open('stop_hinglish.txt', 'r')
|
41 |
+
stop_words = f.read()
|
42 |
+
|
43 |
+
if selected_user != 'Overall':
|
44 |
+
df = df[df['user'] == selected_user]
|
45 |
+
|
46 |
+
temp = df[df['user'] != 'group_notification']
|
47 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
48 |
+
|
49 |
+
def remove_stop_words(message):
|
50 |
+
y = []
|
51 |
+
for word in message.lower().split():
|
52 |
+
if word not in stop_words:
|
53 |
+
y.append(word)
|
54 |
+
return " ".join(y)
|
55 |
+
|
56 |
+
wc = WordCloud(width=500,height=500,min_font_size=10,background_color='white')
|
57 |
+
temp['message'] = temp['message'].apply(remove_stop_words)
|
58 |
+
df_wc = wc.generate(temp['message'].str.cat(sep=" "))
|
59 |
+
return df_wc
|
60 |
+
|
61 |
+
def most_common_words(selected_user,df):
|
62 |
+
|
63 |
+
f = open('stop_hinglish.txt','r')
|
64 |
+
stop_words = f.read()
|
65 |
+
|
66 |
+
if selected_user != 'Overall':
|
67 |
+
df = df[df['user'] == selected_user]
|
68 |
+
|
69 |
+
temp = df[df['user'] != 'group_notification']
|
70 |
+
temp = temp[temp['message'] != '<Media omitted>\n']
|
71 |
+
|
72 |
+
words = []
|
73 |
+
|
74 |
+
for message in temp['message']:
|
75 |
+
for word in message.lower().split():
|
76 |
+
if word not in stop_words:
|
77 |
+
words.append(word)
|
78 |
+
|
79 |
+
most_common_df = pd.DataFrame(Counter(words).most_common(20))
|
80 |
+
return most_common_df
|
81 |
+
|
82 |
+
def emoji_helper(selected_user,df):
|
83 |
+
if selected_user != 'Overall':
|
84 |
+
df = df[df['user'] == selected_user]
|
85 |
+
|
86 |
+
emojis = []
|
87 |
+
for message in df['message']:
|
88 |
+
emojis.extend([c for c in message if c in emoji.UNICODE_EMOJI['en']])
|
89 |
+
|
90 |
+
emoji_df = pd.DataFrame(Counter(emojis).most_common(len(Counter(emojis))))
|
91 |
+
|
92 |
+
return emoji_df
|
93 |
+
|
94 |
+
def monthly_timeline(selected_user,df):
|
95 |
+
|
96 |
+
if selected_user != 'Overall':
|
97 |
+
df = df[df['user'] == selected_user]
|
98 |
+
|
99 |
+
timeline = df.groupby(['year', 'month_num', 'month']).count()['message'].reset_index()
|
100 |
+
|
101 |
+
time = []
|
102 |
+
for i in range(timeline.shape[0]):
|
103 |
+
time.append(timeline['month'][i] + "-" + str(timeline['year'][i]))
|
104 |
+
|
105 |
+
timeline['time'] = time
|
106 |
+
|
107 |
+
return timeline
|
108 |
+
|
109 |
+
def daily_timeline(selected_user,df):
|
110 |
+
|
111 |
+
if selected_user != 'Overall':
|
112 |
+
df = df[df['user'] == selected_user]
|
113 |
+
|
114 |
+
daily_timeline = df.groupby('only_date').count()['message'].reset_index()
|
115 |
+
|
116 |
+
return daily_timeline
|
117 |
+
|
118 |
+
def week_activity_map(selected_user,df):
|
119 |
+
|
120 |
+
if selected_user != 'Overall':
|
121 |
+
df = df[df['user'] == selected_user]
|
122 |
+
|
123 |
+
return df['day_name'].value_counts()
|
124 |
+
|
125 |
+
def month_activity_map(selected_user,df):
|
126 |
+
|
127 |
+
if selected_user != 'Overall':
|
128 |
+
df = df[df['user'] == selected_user]
|
129 |
+
|
130 |
+
return df['month'].value_counts()
|
131 |
+
|
132 |
+
def activity_heatmap(selected_user,df):
|
133 |
+
|
134 |
+
if selected_user != 'Overall':
|
135 |
+
df = df[df['user'] == selected_user]
|
136 |
+
|
137 |
+
user_heatmap = df.pivot_table(index='day_name', columns='period', values='message', aggfunc='count').fillna(0)
|
138 |
+
|
139 |
+
return user_heatmap
|