Spaces:
Running
Running
import asyncio | |
import base64 | |
import itertools | |
import json | |
import os | |
import shutil | |
import subprocess | |
import time | |
import cv2 | |
import numpy as np | |
import pandas_datareader as pdr | |
import pytesseract | |
import speech_recognition as sr | |
import uvicorn | |
from fastapi import FastAPI, File, UploadFile,Depends, WebSocket, WebSocketDisconnect | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import FileResponse | |
from tqdm import tqdm | |
from transformers import pipeline | |
from CaesarDetectEntity import CaesarDetectEntity | |
from CaesarFaceDetection.caesarfd import CaesarFaceDetection | |
from CaesarHotelBooking.caesarhotelbooking import CaesarHotelBooking | |
from CaesarObjectDetection.CaesarYolo import CaesarYolo | |
from CaesarTranslate import CaesarLangTranslate | |
from CaesarVoice import CaesarVoice | |
from csv_to_db import ImportCSV | |
from RequestModels import * | |
from CaesarFaceRecognition.caesardeepface import CaesarDeepFace | |
importcsv = ImportCSV("CaesarAI") | |
caesaryolo = CaesarYolo() | |
caesarfacedetectmodel = CaesarFaceDetection() | |
app = FastAPI() | |
CURRENT_DIR = os.path.realpath(__file__).replace(f"/main.py","") | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], # can alter with time | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract' | |
def caesaraihome(): | |
return "Welcome to CaesarAI's API's and CaesarAINL." | |
async def caesarobjectdetectws(websocket: WebSocket): | |
# listen for connections | |
await websocket.accept() | |
try: | |
while True: | |
contents = await websocket.receive_bytes() | |
arr = np.frombuffer(contents, np.uint8) # turns the image byte data into numpy array | |
frame = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) # turns numpy array into the original image shape and state | |
image,_,_ = caesaryolo.caesar_object_detect(frame) # Does object detection and returns a numpy array | |
ret, buffer = cv2.imencode('.png', image) # turns numpy array into buffer | |
await websocket.send_bytes(buffer.tobytes()) # sends the buffer as bytes | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
async def caesarfacedetect(websocket: WebSocket): | |
# listen for connections | |
await websocket.accept() | |
try: | |
while True: | |
contents = await websocket.receive_bytes() | |
arr = np.frombuffer(contents, np.uint8) # turns the image byte data into numpy array | |
frame = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) # turns numpy array into the original image shape and state | |
image = caesarfacedetectmodel.detect_face(frame) # Does object detection and returns a numpy array | |
ret, buffer = cv2.imencode('.png', image) # turns numpy array into buffer | |
await websocket.send_bytes(buffer.tobytes()) # sends the buffer as bytes | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
def caesarfacesnap(frames: CaesarOCRHTTPModel): | |
try: | |
frames = dict(frames) | |
image_arr = np.frombuffer(base64.b64decode(frames["frame"]),dtype="uint8") | |
image = cv2.imdecode(image_arr,flags=cv2.IMREAD_COLOR) | |
#.reshape(frames["shape"][0],frames["shape"][1],3) | |
image = caesarfacedetectmodel.detect_face(image,snapcropface=True) | |
if image == [] or image is None: | |
return {"frame":"no face was detected."} | |
elif image != [] or image is None: | |
x=np.ascontiguousarray(image) | |
return {'frame': base64.b64encode(x).decode(),"shape":[image.shape[0],image.shape[1]]} | |
except Exception as ex: | |
return {"error":f"{type(ex)},{ex}"} | |
def faceauthorizeuser(recogperson: CaesarFaceAuth = Depends(),file: UploadFile = File(...)): | |
try: | |
recogperson = dict(recogperson) | |
auth_file = f"{CURRENT_DIR}/CaesarFaceRecognition/authimages/{recogperson['user']}.jpg" | |
with open(auth_file, 'wb') as f: | |
shutil.copyfileobj(file.file, f) | |
return {"message":f"{recogperson['user']} is authorized for face recognition."} | |
except Exception as ex: | |
return {"message": f"{type(ex)},{ex}"} | |
finally: | |
file.file.close() | |
# https://stackoverflow.com/questions/65504438/how-to-add-both-file-and-json-body-in-a-fastapi-post-request | |
def caesarfaceauth(recogperson: CaesarFaceAuth = Depends(),file: UploadFile = File(...)): | |
try: | |
recogperson = dict(recogperson) | |
uploaded_file = f"{CURRENT_DIR}/CaesarFaceRecognition/images/temp.jpg" | |
auth_file = f"{CURRENT_DIR}/CaesarFaceRecognition/authimages/{recogperson['user']}.jpg" | |
with open(uploaded_file, 'wb') as f: | |
shutil.copyfileobj(file.file, f) | |
caeesardeepface = CaesarDeepFace() | |
result = caeesardeepface.face_authentication(filename1=auth_file,filename2=uploaded_file) | |
return result | |
except Exception as ex: | |
return {"message": f"{type(ex)},{ex}"} | |
finally: | |
file.file.close() | |
async def caesarocrextractionws(websocket: WebSocket): | |
# listen for connections | |
await websocket.accept() | |
try: | |
while True: | |
contents = await websocket.receive_bytes() | |
target_words = await websocket.receive_json() | |
target_words = dict(target_words)["target_words"] | |
arr = np.frombuffer(contents, np.uint8) # turns the image byte data into numpy array | |
frame = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) # turns numpy array into the original image shape and state | |
data = pytesseract.image_to_data(frame, output_type=pytesseract.Output.DICT) | |
image_copy = frame.copy() | |
# get all data from the image | |
data = pytesseract.image_to_data(frame, output_type=pytesseract.Output.DICT) | |
# print the data | |
#print(data["text"]) | |
# get all occurences of the that word | |
word_occurences = [ i for i, word in enumerate(data["text"]) for target in target_words if word.lower() == target] | |
for occ in word_occurences: | |
# extract the width, height, top and left position for that detected word | |
w = data["width"][occ] | |
h = data["height"][occ] | |
l = data["left"][occ] | |
t = data["top"][occ] | |
# define all the surrounding box points | |
p1 = (l, t) | |
p2 = (l + w, t) | |
p3 = (l + w, t + h) | |
p4 = (l, t + h) | |
# draw the 4 lines (rectangular) | |
image_copy = cv2.line(image_copy, p1, p2, color=(255, 0, 0), thickness=2) | |
image_copy = cv2.line(image_copy, p2, p3, color=(255, 0, 0), thickness=2) | |
image_copy = cv2.line(image_copy, p3, p4, color=(255, 0, 0), thickness=2) | |
image_copy = cv2.line(image_copy, p4, p1, color=(255, 0, 0), thickness=2) | |
ret, buffer = cv2.imencode('.png', image_copy) # turns numpy array into buffer | |
await websocket.send_bytes(buffer.tobytes()) # sends the buffer as bytes | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
async def caesarocrws(websocket: WebSocket): | |
# listen for connections | |
await websocket.accept() | |
try: | |
while True: | |
contents = await websocket.receive_bytes() | |
arr = np.frombuffer(contents, np.uint8) # turns the image byte data into numpy array | |
frame = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) # turns numpy array into the original image shape and state | |
# get the string | |
string = pytesseract.image_to_string(frame) | |
# print it | |
#print(string) | |
message = json.dumps({"message":string}) | |
ret, buffer = cv2.imencode('.png', frame) # turns numpy array into buffer | |
await websocket.send_json(message) # sends the buffer as bytes | |
await websocket.send_bytes(buffer.tobytes()) # sends the buffer as bytes | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
def caesarocr(frames: CaesarOCRHTTPModel): | |
# listen for connections | |
try: | |
frames = dict(frames) | |
image_arr = np.frombuffer(base64.b64decode(frames["frame"]),dtype="uint8") | |
image = cv2.imdecode(image_arr,flags=cv2.IMREAD_COLOR) | |
# .reshape(frames["shape"][0],frames["shape"][1],3) | |
string = pytesseract.image_to_string(image) | |
return {'message': string} | |
except Exception as ex: | |
return {"error":f"{type(ex)},{ex}"} | |
async def sendvideows(websocket: WebSocket): | |
# listen for connections | |
await websocket.accept() | |
try: | |
while True: | |
contents = await websocket.receive_bytes() | |
arr = np.frombuffer(contents, np.uint8) | |
#print(arr) | |
frame = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) | |
#print(frame.shape) | |
#image = caesaryolo.caesar_object_detect(frame) | |
ret, buffer = cv2.imencode('.png', frame) | |
#print(buffer) | |
await websocket.send_bytes(buffer.tobytes()) | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
# Done | |
def caesarobjectdetect(frames: CaesarObjectDetectModel): | |
frames = dict(frames) | |
image,_,_ = caesaryolo.caesar_object_detect(np.frombuffer(base64.b64decode(frames["frame"]),dtype="uint8").reshape(frames["shape"][0],frames["shape"][1],3))#base64.b64decode(frames["frame"])) | |
return {'frame': base64.b64encode(image).decode(),"shape":[image.shape[0],image.shape[1]]} | |
async def caesarobjectdetectvideows(websocket: WebSocket): | |
# listen for connections | |
await websocket.accept() | |
try: | |
while True: | |
video_frames = await websocket.receive_json() | |
with open(f'{CURRENT_DIR}/CaesarObjectDetection/content.mp4', 'wb') as f: | |
f.write(base64.b64decode(video_frames["frame"].replace("data:video/mp4;base64,",""))) | |
duration = 20 # seconds | |
best_min_size = (32000 + 100000) * (1.073741824 * duration) / (8 * 1024) | |
CaesarYolo.compress_video(f"{CURRENT_DIR}/CaesarObjectDetection/content.mp4", f'{CURRENT_DIR}/CaesarObjectDetection/content_compressed.mp4', best_min_size) | |
if "content.mp4" in os.listdir(f"{CURRENT_DIR}/CaesarObjectDetection"): | |
os.remove(f"{CURRENT_DIR}/CaesarObjectDetection/content.mp4") | |
caesaryolo.video_load('content.mp4') | |
while True: | |
image,time_elapsed,end_time = caesaryolo.caesar_object_detect("video") | |
if image is not None: | |
#print(image) | |
ret, buffer = cv2.imencode('.png', image) # turns numpy array into buffer | |
#png_as_text = base64.b64encode(buffer) | |
#await websocket.send_bytes(base64.b64encode(buffer).decode("utf-8")) | |
await websocket.send_json({"time_elapsed":time_elapsed,"end_time":end_time}) | |
#cv2.imshow("image", image) | |
else: | |
break | |
caesaryolo.cap.release() | |
ffmpeg_command = ["ffmpeg","-y","-i",f"{CURRENT_DIR}/CaesarObjectDetection/output.avi",f"{CURRENT_DIR}/CaesarObjectDetection/output.mp4"] | |
subprocess.call(ffmpeg_command) | |
await websocket.send_json({"result":"finished"}) | |
except WebSocketDisconnect: | |
print("Client disconnected") | |
# Done | |
def caesarobjectdetectvideoget(): | |
return FileResponse(f"{CURRENT_DIR}/CaesarObjectDetection/output.mp4") | |
def createcaesaraipi(caesar_api_post : CaesarCreateAPIModel): | |
caesar_api_post = dict(caesar_api_post) | |
caesarapi_db_exists = list(importcsv.db.caesarapis.find( { "caesarapis" : { "$exists" : "true" } } )) | |
#print(caesarapi_db) | |
if len(caesarapi_db_exists) == 0: | |
importcsv.db.caesarapis.insert_one(caesar_api_post) | |
return {"message":"caesarapi created."} | |
elif len(caesarapi_db_exists) > 0: | |
caesarapi_db = caesarapi_db_exists[0] | |
#print(caesarapi_db) | |
for apis in caesar_api_post["caesarapis"]: | |
if apis not in caesarapi_db["caesarapis"]: | |
caesarapi_db["caesarapis"].append(apis) | |
elif apis in caesarapi_db["caesarapis"]: | |
continue | |
importcsv.db.caesarapis.replace_one({ "caesarapis" : { "$exists" : "true" } },caesarapi_db) | |
return {"message":"caesarapi stored."} | |
# Done | |
def getcaesaraipi(): | |
try: | |
caesarapi_db_exists = list(importcsv.db.caesarapis.find( { "caesarapis" : { "$exists" : "true" } } ))[0] | |
del caesarapi_db_exists["_id"] | |
return caesarapi_db_exists | |
except KeyError as kex: | |
return {"error":f"Api doesn't exist"} | |
# Done | |
def triggerapi(user_trigger : TriggerAPIModel): | |
user_trigger = dict(user_trigger)["user_trigger"] | |
try: | |
caesarapi_db_exists = list(importcsv.db.caesarapis.find( { "caesarapis" : { "$exists" : "true" } } ))[0] | |
except KeyError as kex: | |
return {"error":"Api doesn't exist"} | |
try: | |
triggered_apis = [i for i in caesarapi_db_exists["caesarapis"] if i["triggerwords"] in user_trigger] | |
triggered_api = triggered_apis[0] | |
return triggered_api | |
except (IndexError,KeyError) as kex: | |
return {"message":"sorry couldn't understand what api you want."} | |
# Done | |
def caesaraihotelbookings(hotelbookings_json: CaesarHotelBookingsModel): | |
""" | |
params = { | |
"city":city, | |
"checkin_date":"2023-8-01", | |
"checkout_date":"2023-8-08", | |
"purpose":"work", | |
"num_of_adults":10, | |
"num_of_rooms":5, | |
"num_of_children":0, | |
"page_num":i | |
} | |
""" | |
def get_price_range(bookings_json,city,range,): | |
def condition(dic): | |
''' Define your own condition here''' | |
try: | |
price = dic['assumed_final_price'] | |
return price <= range | |
except KeyError as kex: | |
return False | |
#print(bookings_json) | |
bookings = bookings_json[f"{city.lower()}_bookings"] | |
filtered = [d for d in bookings if condition(d)] | |
return filtered | |
try: | |
overall_booking_info = [] | |
hotelbookings_json = dict(hotelbookings_json) | |
try: | |
exclude_whole = hotelbookings_json["exclude_whole"] | |
except KeyError as kex: | |
exclude_whole = None | |
city = hotelbookings_json["city"] | |
price_range = hotelbookings_json["price_range"] | |
print(f"Extracting flight data for {city}...") | |
for i in tqdm(range(1,hotelbookings_json["num_of_pages"]+1)): | |
params = { | |
"city":city, | |
"checkin_date":hotelbookings_json["checkin_date"], | |
"checkout_date":hotelbookings_json["checkout_date"], | |
"purpose":hotelbookings_json["purpose"], | |
"num_of_adults":hotelbookings_json["num_of_adults"], | |
"num_of_rooms":hotelbookings_json["num_of_rooms"], | |
"num_of_children":hotelbookings_json["num_of_children"], | |
"page_num":i | |
} | |
url = CaesarHotelBooking.create_url(**params) | |
bookinginfo = CaesarHotelBooking.caesar_get_hotel_info(url) | |
overall_booking_info.append(bookinginfo) | |
full_bookings = list(itertools.chain(*overall_booking_info)) | |
price_range_bookings = get_price_range({f"{city.lower()}_bookings":full_bookings},city,price_range) | |
if exclude_whole == "true": | |
return {"caesaroutput":{"caesarbookings":price_range_bookings}} | |
#return {f"{city.lower()}_bookings_lower_than_{price_range}":price_range_bookings} | |
return {"caesaroutput":{"caesarbookings":full_bookings}} | |
#return {"caesaroutput":full_bookings} | |
#return {f"{city.lower()}_bookings":full_bookings,f"{city.lower()}_bookings_lower_than_{price_range}":price_range_bookings} | |
except Exception as ex: | |
return {"error":f"{type(ex)}{ex}"} | |
def caesarlangtranslate(translate_json: CaesarLangTranslateModel): | |
try:# hello | |
translate_json = dict(translate_json) | |
text = translate_json["caesartranslate"] | |
language = "en" | |
try: | |
responsejson = translate_json["response"] | |
language = translate_json["language"] | |
try: | |
triggerword = translate_json["triggerword"] | |
caesarlang = CaesarDetectEntity() | |
text,language = caesarlang.run(triggerword,text,caesarlang.main_entities[triggerword]) | |
except KeyError as kex: | |
pass | |
if responsejson == "true": | |
response = True | |
elif responsejson == "false": | |
response = False | |
else: | |
response = False | |
except KeyError as kex: | |
response = False | |
caesarlangtranslate = CaesarLangTranslate() | |
original,translation,original_language,destination_language = caesarlangtranslate.translate(text,lang=language,response=response) | |
return {"caesaroutput":translation,"caesartranslation":{"original":original,"translation":translation,"original_language":original_language,"destination_language":destination_language}} | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
def caesarlangtranslateget(text:str,triggerword:str,responsejson:str): | |
try:# hello | |
caesarlang = CaesarDetectEntity() | |
try: | |
text,language = caesarlang.run(triggerword,text,caesarlang.main_entities[triggerword]) | |
if responsejson == "true": | |
response = True | |
elif responsejson == "false": | |
response = False | |
else: | |
response = False | |
except KeyError as kex: | |
response = False | |
caesarlangtranslate = CaesarLangTranslate() | |
original,translation,original_language,destination_language = caesarlangtranslate.translate(text,lang=language,response=response) | |
return {"caesaroutput":translation,"caesartranslation":{"original":original,"translation":translation,"original_language":original_language,"destination_language":destination_language}} | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
def caesarsr(audio_data: CaesarSRModel): | |
transcript = "" | |
try: | |
#print("FORM DATA RECEIVED") | |
# TODO Make it show that the .3pg extension is adaptable | |
audiobase64json = dict(audio_data) | |
decode_bytes = base64.b64decode(audiobase64json["audio_data"].replace("data:video/3gpp;base64,","")) | |
with open("temp.3pg", "wb") as wav_file: | |
wav_file.write(decode_bytes) | |
os.system('ffmpeg -y -i temp.3pg understand.wav') | |
recognizer = sr.Recognizer() | |
audioFile = sr.AudioFile("understand.wav") | |
with audioFile as source: | |
data = recognizer.record(source) | |
transcript = recognizer.recognize_google(data, key=None) | |
return {"message":transcript} | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
def caesarvoice(voice_input : CaesarVoiceModel): | |
try: | |
voice_input = dict(voice_input) | |
#try: | |
filename = voice_input["filename"] | |
lang = voice_input["language"] | |
if filename == None: | |
filename = "temp.wav" | |
if lang == None: | |
lang = "en" | |
CaesarVoice.synthesise(voice_input["text"],filename,lang=lang) | |
return {"message":"voice syntheized"}# send_file(filename,"audio/x-wav") | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
def caesarsummarize(json_input : CaesarSummarizeModel): | |
try: | |
json_input = dict(json_input) | |
original_text = json_input["text"] | |
summarization = pipeline("summarization") | |
summary_text = summarization(original_text)[0]['summary_text'] | |
return {"caesaroutput":summary_text}# send_file(filename,"audio/x-wav") | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
def caesarstockinfo(json_input: CaesarStockInfoModel): | |
try: | |
json_input = dict(json_input) | |
# import AAPL stock price | |
stock_tick = json_input["stock"] | |
start_date = json_input["start_date"] | |
end_date = json_input["end_date"] | |
df = pdr.get_data_yahoo(stock_tick, start=start_date,end=end_date) | |
print(df) | |
return {"caesaroutput":str(df.to_csv(index=False))}# send_file(filename,"audio/x-wav") | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
def caesarvoiceget(): | |
try: | |
filename = "temp.wav" | |
return FileResponse(filename,media_type="audio/x-wav") | |
except Exception as ex: | |
return {"error":f"{type(ex)}-{ex}"} | |
async def main(): | |
config = uvicorn.Config("main:app", port=7860, log_level="info",host="0.0.0.0",reload=True) | |
server = uvicorn.Server(config) | |
await server.serve() | |
if __name__ == "__main__": | |
asyncio.run(main()) | |