File size: 4,531 Bytes
9d3162f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import cv2
import numpy as np

import time
import sys

CONFIDENCE = 0.5
SCORE_THRESHOLD = 0.5
IOU_THRESHOLD = 0.5
config_path = "cfg/yolov3.cfg"
weights_path = "weights/yolov3.weights"
font_scale = 1
thickness = 1
labels = open("data/coco.names").read().strip().split("\n")
colors = np.random.randint(0, 255, size=(len(labels), 3), dtype="uint8")

net = cv2.dnn.readNetFromDarknet(config_path, weights_path)

ln = net.getLayerNames()
try:
    ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
except IndexError:
    # in case getUnconnectedOutLayers() returns 1D array when CUDA isn't available
    ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]
# read the file from the command line
video_file = sys.argv[1]
cap = cv2.VideoCapture(video_file)
_, image = cap.read()
h, w = image.shape[:2]
fourcc = cv2.VideoWriter_fourcc(*"XVID")
out = cv2.VideoWriter("output.avi", fourcc, 20.0, (w, h))
while True:
    _, image = cap.read()

    h, w = image.shape[:2]
    blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)
    net.setInput(blob)
    start = time.perf_counter()
    layer_outputs = net.forward(ln)
    time_took = time.perf_counter() - start
    print("Time took:", time_took)
    boxes, confidences, class_ids = [], [], []

    # loop over each of the layer outputs
    for output in layer_outputs:
        # loop over each of the object detections
        for detection in output:
            # extract the class id (label) and confidence (as a probability) of
            # the current object detection
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            # discard weak predictions by ensuring the detected
            # probability is greater than the minimum probability
            if confidence > CONFIDENCE:
                # scale the bounding box coordinates back relative to the
                # size of the image, keeping in mind that YOLO actually
                # returns the center (x, y)-coordinates of the bounding
                # box followed by the boxes' width and height
                box = detection[:4] * np.array([w, h, w, h])
                (centerX, centerY, width, height) = box.astype("int")

                # use the center (x, y)-coordinates to derive the top and
                # and left corner of the bounding box
                x = int(centerX - (width / 2))
                y = int(centerY - (height / 2))

                # update our list of bounding box coordinates, confidences,
                # and class IDs
                boxes.append([x, y, int(width), int(height)])
                confidences.append(float(confidence))
                class_ids.append(class_id)

    # perform the non maximum suppression given the scores defined before
    idxs = cv2.dnn.NMSBoxes(boxes, confidences, SCORE_THRESHOLD, IOU_THRESHOLD)

    font_scale = 1
    thickness = 1

    # ensure at least one detection exists
    if len(idxs) > 0:
        # loop over the indexes we are keeping
        for i in idxs.flatten():
            # extract the bounding box coordinates
            x, y = boxes[i][0], boxes[i][1]
            w, h = boxes[i][2], boxes[i][3]
            # draw a bounding box rectangle and label on the image
            color = [int(c) for c in colors[class_ids[i]]]
            cv2.rectangle(image, (x, y), (x + w, y + h), color=color, thickness=thickness)
            text = f"{labels[class_ids[i]]}: {confidences[i]:.2f}"
            # calculate text width & height to draw the transparent boxes as background of the text
            (text_width, text_height) = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, fontScale=font_scale, thickness=thickness)[0]
            text_offset_x = x
            text_offset_y = y - 5
            box_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y - text_height))
            overlay = image.copy()
            cv2.rectangle(overlay, box_coords[0], box_coords[1], color=color, thickness=cv2.FILLED)
            # add opacity (transparency to the box)
            image = cv2.addWeighted(overlay, 0.6, image, 0.4, 0)
            # now put the text (label: confidence %)
            cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX,
                fontScale=font_scale, color=(0, 0, 0), thickness=thickness)

    out.write(image)
    cv2.imshow("image", image)
    
    if ord("q") == cv2.waitKey(1):
        break


cap.release()
cv2.destroyAllWindows()