Spaces:
Running
Running
File size: 9,974 Bytes
9d3162f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import time
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
def boxes_iou(box1, box2):
"""
Returns the IOU between `box1` and `box2` (i.e intersection area divided by union area)
"""
# Get the Width and Height of each bounding box
width_box1 = box1[2]
height_box1 = box1[3]
width_box2 = box2[2]
height_box2 = box2[3]
# Calculate the area of the each bounding box
area_box1 = width_box1 * height_box1
area_box2 = width_box2 * height_box2
# Find the vertical edges of the union of the two bounding boxes
mx = min(box1[0] - width_box1/2.0, box2[0] - width_box2/2.0)
Mx = max(box1[0] + width_box1/2.0, box2[0] + width_box2/2.0)
# Calculate the width of the union of the two bounding boxes
union_width = Mx - mx
# Find the horizontal edges of the union of the two bounding boxes
my = min(box1[1] - height_box1/2.0, box2[1] - height_box2/2.0)
My = max(box1[1] + height_box1/2.0, box2[1] + height_box2/2.0)
# Calculate the height of the union of the two bounding boxes
union_height = My - my
# Calculate the width and height of the area of intersection of the two bounding boxes
intersection_width = width_box1 + width_box2 - union_width
intersection_height = height_box1 + height_box2 - union_height
# If the the boxes don't overlap then their IOU is zero
if intersection_width <= 0 or intersection_height <= 0:
return 0.0
# Calculate the area of intersection of the two bounding boxes
intersection_area = intersection_width * intersection_height
# Calculate the area of the union of the two bounding boxes
union_area = area_box1 + area_box2 - intersection_area
# Calculate the IOU
iou = intersection_area/union_area
return iou
def nms(boxes, iou_thresh):
"""
Performs Non maximal suppression technique to `boxes` using `iou_thresh` threshold
"""
# print(boxes.shape)
# If there are no bounding boxes do nothing
if len(boxes) == 0:
return boxes
# Create a PyTorch Tensor to keep track of the detection confidence
# of each predicted bounding box
det_confs = torch.zeros(len(boxes))
# Get the detection confidence of each predicted bounding box
for i in range(len(boxes)):
det_confs[i] = boxes[i][4]
# Sort the indices of the bounding boxes by detection confidence value in descending order.
# We ignore the first returned element since we are only interested in the sorted indices
_,sortIds = torch.sort(det_confs, descending = True)
# Create an empty list to hold the best bounding boxes after
# Non-Maximal Suppression (NMS) is performed
best_boxes = []
# Perform Non-Maximal Suppression
for i in range(len(boxes)):
# Get the bounding box with the highest detection confidence first
box_i = boxes[sortIds[i]]
# Check that the detection confidence is not zero
if box_i[4] > 0:
# Save the bounding box
best_boxes.append(box_i)
# Go through the rest of the bounding boxes in the list and calculate their IOU with
# respect to the previous selected box_i.
for j in range(i + 1, len(boxes)):
box_j = boxes[sortIds[j]]
# If the IOU of box_i and box_j is higher than the given IOU threshold set
# box_j's detection confidence to zero.
if boxes_iou(box_i, box_j) > iou_thresh:
box_j[4] = 0
return best_boxes
def detect_objects(model, img, iou_thresh, nms_thresh):
# Start the time. This is done to calculate how long the detection takes.
start = time.time()
# Set the model to evaluation mode.
model.eval()
# Convert the image from a NumPy ndarray to a PyTorch Tensor of the correct shape.
# The image is transposed, then converted to a FloatTensor of dtype float32, then
# Normalized to values between 0 and 1, and finally unsqueezed to have the correct
# shape of 1 x 3 x 416 x 416
img = torch.from_numpy(img.transpose(2,0,1)).float().div(255.0).unsqueeze(0)
# Feed the image to the neural network with the corresponding NMS threshold.
# The first step in NMS is to remove all bounding boxes that have a very low
# probability of detection. All predicted bounding boxes with a value less than
# the given NMS threshold will be removed.
list_boxes = model(img, nms_thresh)
# Make a new list with all the bounding boxes returned by the neural network
boxes = list_boxes[0][0] + list_boxes[1][0] + list_boxes[2][0]
# Perform the second step of NMS on the bounding boxes returned by the neural network.
# In this step, we only keep the best bounding boxes by eliminating all the bounding boxes
# whose IOU value is higher than the given IOU threshold
boxes = nms(boxes, iou_thresh)
# Stop the time.
finish = time.time()
# Print the time it took to detect objects
print('\n\nIt took {:.3f}'.format(finish - start), 'seconds to detect the objects in the image.\n')
# Print the number of objects detected
print('Number of Objects Detected:', len(boxes), '\n')
return boxes
def load_class_names(namesfile):
# Create an empty list to hold the object classes
class_names = []
# Open the file containing the COCO object classes in read-only mode
with open(namesfile, 'r') as fp:
# The coco.names file contains only one object class per line.
# Read the file line by line and save all the lines in a list.
lines = fp.readlines()
# Get the object class names
for line in lines:
# Make a copy of each line with any trailing whitespace removed
line = line.rstrip()
# Save the object class name into class_names
class_names.append(line)
return class_names
def print_objects(boxes, class_names):
print('Objects Found and Confidence Level:\n')
for i in range(len(boxes)):
box = boxes[i]
if len(box) >= 7 and class_names:
cls_conf = box[5]
cls_id = box[6]
print('%i. %s: %f' % (i + 1, class_names[cls_id], cls_conf))
def plot_boxes(img, boxes, class_names, plot_labels, color = None):
# Define a tensor used to set the colors of the bounding boxes
colors = torch.FloatTensor([[1,0,1],[0,0,1],[0,1,1],[0,1,0],[1,1,0],[1,0,0]])
# Define a function to set the colors of the bounding boxes
def get_color(c, x, max_val):
ratio = float(x) / max_val * 5
i = int(np.floor(ratio))
j = int(np.ceil(ratio))
ratio = ratio - i
r = (1 - ratio) * colors[i][c] + ratio * colors[j][c]
return int(r * 255)
# Get the width and height of the image
width = img.shape[1]
height = img.shape[0]
# Create a figure and plot the image
fig, a = plt.subplots(1,1)
a.imshow(img)
# Plot the bounding boxes and corresponding labels on top of the image
for i in range(len(boxes)):
# Get the ith bounding box
box = boxes[i]
# Get the (x,y) pixel coordinates of the lower-left and lower-right corners
# of the bounding box relative to the size of the image.
x1 = int(np.around((box[0] - box[2]/2.0) * width))
y1 = int(np.around((box[1] - box[3]/2.0) * height))
x2 = int(np.around((box[0] + box[2]/2.0) * width))
y2 = int(np.around((box[1] + box[3]/2.0) * height))
# Set the default rgb value to red
rgb = (1, 0, 0)
# Use the same color to plot the bounding boxes of the same object class
if len(box) >= 7 and class_names:
cls_conf = box[5]
cls_id = box[6]
classes = len(class_names)
offset = cls_id * 123457 % classes
red = get_color(2, offset, classes) / 255
green = get_color(1, offset, classes) / 255
blue = get_color(0, offset, classes) / 255
# If a color is given then set rgb to the given color instead
if color is None:
rgb = (red, green, blue)
else:
rgb = color
# Calculate the width and height of the bounding box relative to the size of the image.
width_x = x2 - x1
width_y = y1 - y2
# Set the postion and size of the bounding box. (x1, y2) is the pixel coordinate of the
# lower-left corner of the bounding box relative to the size of the image.
rect = patches.Rectangle((x1, y2),
width_x, width_y,
linewidth = 2,
edgecolor = rgb,
facecolor = 'none')
# Draw the bounding box on top of the image
a.add_patch(rect)
# If plot_labels = True then plot the corresponding label
if plot_labels:
# Create a string with the object class name and the corresponding object class probability
conf_tx = class_names[cls_id] + ': {:.1f}'.format(cls_conf)
# Define x and y offsets for the labels
lxc = (img.shape[1] * 0.266) / 100
lyc = (img.shape[0] * 1.180) / 100
# Draw the labels on top of the image
a.text(x1 + lxc, y1 - lyc, conf_tx, fontsize = 12, color = 'k',
bbox = dict(facecolor = rgb, edgecolor = rgb, alpha = 0.6))
plt.axis("off")
plt.savefig("output.jpg")
plt.show()
|