Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffuserslocal.src.diffusers import UNet2DConditionModel | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
from diffuserslocal.src.diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_ldm3d_inpaint import StableDiffusionLDM3DInpaintPipeline | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from functools import partial | |
import tempfile | |
from mesh import get_mesh | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_arch = "zoe" | |
# Inpainting pipeline | |
unet = UNet2DConditionModel.from_pretrained("pablodawson/ldm3d-inpainting", cache_dir="cache", subfolder="unet", in_channels=9, low_cpu_mem_usage=False, ignore_mismatched_sizes=True) | |
pipe = StableDiffusionLDM3DInpaintPipeline.from_pretrained("Intel/ldm3d-4c", cache_dir="cache" ).to(device) | |
# Depth estimation | |
model_type = "DPT_Large" # MiDaS v3 - Large (highest accuracy, slowest inference speed) | |
#model_type = "DPT_Hybrid" # MiDaS v3 - Hybrid (medium accuracy, medium inference speed) | |
#model_type = "MiDaS_small" # MiDaS v2.1 - Small (lowest accuracy, highest inference speed) | |
if model_arch == "midas": | |
midas = torch.hub.load("intel-isl/MiDaS", model_type) | |
midas.to(device) | |
midas.eval() | |
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") | |
if model_type == "DPT_Large" or model_type == "DPT_Hybrid": | |
transform = midas_transforms.dpt_transform | |
else: | |
transform = midas_transforms.small_transform | |
def estimate_depth(image): | |
input_batch = transform(image).to(device) | |
with torch.no_grad(): | |
prediction = midas(input_batch) | |
prediction = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=image.shape[:2], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
output = prediction.cpu().numpy() | |
output= 65535 * (output - np.min(output))/(np.max(output) - np.min(output)) | |
return Image.fromarray(output.astype("int32")), output.min(), output.max() | |
elif model_arch == "zoe": | |
# Zoe_N | |
repo = "isl-org/ZoeDepth" | |
model_zoe_n = torch.hub.load(repo, "ZoeD_N", pretrained=True) | |
zoe = model_zoe_n.to(device) | |
def estimate_depth(image): | |
depth_tensor = zoe.infer_pil(image, output_type="tensor") | |
output = depth_tensor.cpu().numpy() | |
output_ = 65535 * (1 - (output - np.min(output))/(np.max(output) - np.min(output))) | |
return Image.fromarray(output_.astype("int32")), output.min(), output.max() | |
def denormalize(image, max, min): | |
image = (image / 65535 - 1 ) * (min - max) + min | |
return image | |
def read_content(file_path: str) -> str: | |
"""read the content of target file | |
""" | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
def predict_images(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"): | |
if negative_prompt == "": | |
negative_prompt = None | |
init_image = cv2.resize(dict["image"], (512, 512)) | |
mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0]) | |
if (depth is None): | |
depth_image, _, _ = estimate_depth(init_image) | |
else: | |
d_i = depth[:,:,0] | |
depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i)) | |
depth_image = depth_image.astype("int32") | |
depth_image = Image.fromarray(depth_image) | |
init_image = Image.fromarray(init_image.astype("uint8")) | |
depth_image = depth_image.resize((512, 512)) | |
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength) | |
depth_out = np.array(output.depth[0]) | |
output_depth_vis = (depth_out - np.min(depth_out)) / (np.max(depth_out) - np.min(depth_out)) * 255 | |
output_depth_vis = output_depth_vis.astype("uint8") | |
output_depth = Image.fromarray(output_depth_vis) | |
return output.rgb[0], output_depth, gr.update(visible=True) | |
css = ''' | |
.gradio-container{max-width: 1100px !important} | |
#image_upload{min-height:400px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
#mask_radio .gr-form{background:transparent; border: none} | |
#word_mask{margin-top: .75em !important} | |
#word_mask textarea:disabled{opacity: 0.3} | |
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
.dark .footer {border-color: #303030} | |
.dark .footer>p {background: #0b0f19} | |
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
#image_upload .touch-none{display: flex} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} | |
div#share-btn-container > div {flex-direction: row;background: black;align-items: center} | |
#share-btn-container:hover {background-color: #060606} | |
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} | |
#share-btn * {all: unset} | |
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} | |
#share-btn-container .wrap {display: none !important} | |
#share-btn-container.hidden {display: none!important} | |
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; | |
border-top-left-radius: 0px;} | |
#prompt-container{margin-top:-18px;} | |
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} | |
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} | |
''' | |
image_blocks = gr.Blocks(css=css, elem_id="total-container") | |
def create_vis_demo(): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400) | |
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400) | |
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True): | |
with gr.Row(): | |
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt") | |
btn = gr.Button("Inpaint!", elem_id="run_button") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(mobile_collapse=False, equal_height=True): | |
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale") | |
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps") | |
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength") | |
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image") | |
with gr.Row(mobile_collapse=False, equal_height=True): | |
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"] | |
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler") | |
with gr.Column(): | |
image_out = gr.Image(label="Output", elem_id="output-img", height=400) | |
depth_out = gr.Image(label="Depth", elem_id="depth-img", height=400) | |
with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container: | |
community_icon = gr.HTML(community_icon_html) | |
loading_icon = gr.HTML(loading_icon_html) | |
share_button = gr.Button("Share to community", elem_id="share-btn",visible=True) | |
btn.click(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container], api_name='run') | |
prompt.submit(fn=predict_images, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, depth_out, share_btn_container]) | |
share_button.click(None, [], [], _js=share_js) | |
def predict_images_3d(dict, depth, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler", keep_edges=False): | |
if negative_prompt == "": | |
negative_prompt = None | |
init_image = cv2.resize(dict["image"], (512, 512)) | |
mask = Image.fromarray(cv2.resize(dict["mask"], (512, 512))[:,:,0]) | |
mask.save("temp_mask.jpg") | |
if (depth is None): | |
depth_image, min, max = estimate_depth(init_image) | |
else: | |
d_i = depth[:,:,0] | |
depth_image = 65535 * (d_i - np.min(d_i))/(np.max(d_i) - np.min(d_i)) | |
depth_image = depth_image.astype("int32") | |
depth_image = Image.fromarray(depth_image) | |
init_image = Image.fromarray(init_image.astype("uint8")) | |
depth_image = depth_image.resize((512, 512)) | |
output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, depth_image=depth_image, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength) | |
depth_in = denormalize(np.array(depth_image), min, max) | |
depth_out = denormalize(np.array(output.depth[0]), min, max) | |
output_image = output.rgb[0] | |
input_mesh = get_mesh(depth_in,init_image, keep_edges=keep_edges) | |
output_mesh = get_mesh(depth_out, output_image, keep_edges=keep_edges) | |
return input_mesh, output_mesh, gr.update(visible=True) | |
def create_3d_demo(): | |
gr.Markdown("### Image to 3D mesh") | |
with gr.Row(): | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="numpy", label="Upload",height=400) | |
depth = gr.Image(source='upload', elem_id="depth_upload", type="numpy", label="Upload",height=400) | |
checkbox = gr.Checkbox(label="Keep occlusion edges", value=False) | |
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
with gr.Row(mobile_collapse=False, equal_height=True): | |
guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale") | |
steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps") | |
strength = gr.Number(value=0.99, minimum=0.01, maximum=0.99, step=0.01, label="strength") | |
negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image") | |
with gr.Row(mobile_collapse=False, equal_height=True): | |
schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"] | |
scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler") | |
with gr.Row() as share_btn_container: | |
with gr.Column(): | |
result_og = gr.Model3D(label="original 3d reconstruction", clear_color=[ | |
1.0, 1.0, 1.0, 1.0]) | |
result_new = gr.Model3D(label="inpainted 3d reconstruction", clear_color=[ | |
1.0, 1.0, 1.0, 1.0]) | |
submit = gr.Button("Submit") | |
submit.click(fn=predict_images_3d, inputs=[image, depth, prompt, negative_prompt, guidance_scale, steps, strength, scheduler, checkbox], outputs=[result_og, result_new, share_btn_container], api_name='run') | |
with image_blocks as demo: | |
with gr.Tab("Image", default=True): | |
create_vis_demo() | |
with gr.Tab("3D"): | |
create_3d_demo() | |
gr.HTML(read_content("header.html")) | |
image_blocks.queue(max_size=25).launch() |