Spaces:
Running
Running
Ozgur Unlu
commited on
Commit
β’
ebeacbc
1
Parent(s):
c3223a8
first initial 2
Browse files- app.py +63 -89
- requirements.txt +1 -3
app.py
CHANGED
@@ -1,106 +1,77 @@
|
|
1 |
-
# app.py
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
import torch
|
6 |
-
import spacy
|
7 |
|
8 |
# Load the zero-shot classification model
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
for ent in doc.ents:
|
20 |
-
if ent.label_ in ["ORG", "PRODUCT"]:
|
21 |
-
potential_brands.append((ent.text, 0.9)) # High confidence for named entities
|
22 |
-
|
23 |
-
# Also check for proper nouns that might be brands
|
24 |
-
for token in doc:
|
25 |
-
if token.pos_ == "PROPN" and token.text not in [brand[0] for brand in potential_brands]:
|
26 |
-
potential_brands.append((token.text, 0.7)) # Lower confidence for proper nouns
|
27 |
-
|
28 |
-
return potential_brands
|
29 |
|
30 |
def classify_product(ad_text):
|
31 |
if not ad_text.strip():
|
32 |
return "Please enter some ad text."
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
"
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
)
|
62 |
-
|
63 |
-
# Brand extraction
|
64 |
-
brands = extract_brand_names(ad_text)
|
65 |
-
|
66 |
-
# Format results
|
67 |
-
results = {
|
68 |
-
"Category": {
|
69 |
-
"classification": category_result["labels"][0],
|
70 |
-
"confidence": f"{category_result['scores'][0]:.2%}"
|
71 |
-
},
|
72 |
-
"Product Type": {
|
73 |
-
"classification": product_result["labels"][0],
|
74 |
-
"confidence": f"{product_result['scores'][0]:.2%}"
|
75 |
-
},
|
76 |
-
"Detected Brands": [
|
77 |
-
{"brand": brand, "confidence": f"{conf:.2%}"}
|
78 |
-
for brand, conf in brands
|
79 |
-
] if brands else "No specific brand detected"
|
80 |
-
}
|
81 |
-
|
82 |
-
# Format output string
|
83 |
-
output = f"""
|
84 |
π Analysis Results:
|
85 |
|
86 |
-
π·οΈ Category: {
|
87 |
-
Confidence: {
|
88 |
|
89 |
-
π¦ Product Type: {
|
90 |
-
Confidence: {
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
|
|
101 |
|
102 |
# Create Gradio interface
|
103 |
-
|
104 |
fn=classify_product,
|
105 |
inputs=gr.Textbox(
|
106 |
lines=5,
|
@@ -109,10 +80,13 @@ iface = gr.Interface(
|
|
109 |
),
|
110 |
outputs=gr.Textbox(label="Analysis Results"),
|
111 |
title="AI Powered Product Identifier from Ad Text",
|
112 |
-
description="Paste your marketing ad text to identify the product category
|
113 |
examples=[
|
114 |
["Experience seamless productivity with our new CloudWork Pro subscription. This AI-powered workspace solution helps remote teams collaborate better with smart document sharing, real-time editing, and integrated chat features. Starting at $29/month."],
|
115 |
["Introducing the new iPhone 15 Pro with revolutionary A17 Pro chip. Capture stunning photos with our advanced 48MP camera system. Available in titanium finish with all-day battery life. Pre-order now at Apple stores nationwide."],
|
116 |
],
|
117 |
theme=gr.themes.Soft()
|
118 |
-
)
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
3 |
import torch
|
|
|
4 |
|
5 |
# Load the zero-shot classification model
|
6 |
+
try:
|
7 |
+
model_name = "MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli"
|
8 |
+
classifier = pipeline("zero-shot-classification",
|
9 |
+
model=model_name,
|
10 |
+
device=0 if torch.cuda.is_available() else -1)
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Error loading main model: {e}")
|
13 |
+
# Fallback to a lighter model if the first one fails
|
14 |
+
model_name = "facebook/bart-large-mnli"
|
15 |
+
classifier = pipeline("zero-shot-classification", model=model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def classify_product(ad_text):
|
18 |
if not ad_text.strip():
|
19 |
return "Please enter some ad text."
|
20 |
|
21 |
+
try:
|
22 |
+
# Category classification
|
23 |
+
category_result = classifier(
|
24 |
+
ad_text,
|
25 |
+
candidate_labels=[
|
26 |
+
"Software", "Electronics", "Clothing", "Food & Beverage",
|
27 |
+
"Healthcare", "Financial Services", "Entertainment",
|
28 |
+
"Home & Garden", "Automotive", "Education"
|
29 |
+
],
|
30 |
+
hypothesis_template="This is an advertisement for a product in the category of",
|
31 |
+
multi_label=False
|
32 |
+
)
|
33 |
+
|
34 |
+
# Product type classification
|
35 |
+
product_result = classifier(
|
36 |
+
ad_text,
|
37 |
+
candidate_labels=[
|
38 |
+
"software application", "mobile app", "subscription service",
|
39 |
+
"physical product", "digital product", "professional service",
|
40 |
+
"consumer device", "platform", "tool"
|
41 |
+
],
|
42 |
+
hypothesis_template="This is specifically a",
|
43 |
+
multi_label=False
|
44 |
+
)
|
45 |
+
|
46 |
+
# Format output string
|
47 |
+
output = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
π Analysis Results:
|
49 |
|
50 |
+
π·οΈ Category: {category_result['labels'][0]}
|
51 |
+
Confidence: {category_result['scores'][0]:.2%}
|
52 |
|
53 |
+
π¦ Product Type: {product_result['labels'][0]}
|
54 |
+
Confidence: {product_result['scores'][0]:.2%}
|
55 |
+
"""
|
56 |
+
|
57 |
+
# Additional product details from text
|
58 |
+
if any(brand_keyword in ad_text.lower() for brand_keyword in ['by', 'from', 'introducing', 'new']):
|
59 |
+
product_name_result = classifier(
|
60 |
+
ad_text,
|
61 |
+
candidate_labels=["contains brand name", "does not contain brand name"],
|
62 |
+
hypothesis_template="This text",
|
63 |
+
multi_label=False
|
64 |
+
)
|
65 |
+
if product_name_result['labels'][0] == "contains brand name":
|
66 |
+
output += "\nπ’ Brand Mention: Likely contains a brand name"
|
67 |
+
|
68 |
+
return output
|
69 |
|
70 |
+
except Exception as e:
|
71 |
+
return f"An error occurred: {str(e)}\nPlease try with different text or contact support."
|
72 |
|
73 |
# Create Gradio interface
|
74 |
+
demo = gr.Interface(
|
75 |
fn=classify_product,
|
76 |
inputs=gr.Textbox(
|
77 |
lines=5,
|
|
|
80 |
),
|
81 |
outputs=gr.Textbox(label="Analysis Results"),
|
82 |
title="AI Powered Product Identifier from Ad Text",
|
83 |
+
description="Paste your marketing ad text to identify the product category and type. Maximum 100 words.",
|
84 |
examples=[
|
85 |
["Experience seamless productivity with our new CloudWork Pro subscription. This AI-powered workspace solution helps remote teams collaborate better with smart document sharing, real-time editing, and integrated chat features. Starting at $29/month."],
|
86 |
["Introducing the new iPhone 15 Pro with revolutionary A17 Pro chip. Capture stunning photos with our advanced 48MP camera system. Available in titanium finish with all-day battery life. Pre-order now at Apple stores nationwide."],
|
87 |
],
|
88 |
theme=gr.themes.Soft()
|
89 |
+
)
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
gradio==4.7.1
|
2 |
transformers==4.34.0
|
3 |
-
torch==2.0.1
|
4 |
-
spacy==3.7.2
|
5 |
-
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.0/en_core_web_sm-3.7.0.tar.gz
|
|
|
1 |
gradio==4.7.1
|
2 |
transformers==4.34.0
|
3 |
+
torch==2.0.1
|
|
|
|