Spaces:
Running
Running
owaiskha9654
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
import pathlib, fitz
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
# from PyPDF2 import PdfReader
|
6 |
+
from google.colab import files
|
7 |
+
from google.colab import userdata
|
8 |
+
from sentence_transformers import SentenceTransformer
|
9 |
+
from sentence_transformers.util import cos_sim
|
10 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
11 |
+
from langchain.docstore.document import Document
|
12 |
+
from huggingface_hub import InferenceClient
|
13 |
+
import gradio as gr
|
14 |
+
|
15 |
+
|
16 |
+
file_paths = ["docs/MANUU U.G. PROGRAMMES PROSPECTUS 2022-23 Eng 5 April 2022 4 PM.pdf","Prospectus 2023-24 (Eng-Version) (1)_0.pdf"]
|
17 |
+
|
18 |
+
page_contents = []
|
19 |
+
for fname in file_paths:
|
20 |
+
with fitz.open(fname) as doc:
|
21 |
+
print("Total Pages in {} are {}".format(fname,len(doc)))
|
22 |
+
for page in doc:
|
23 |
+
text = page.get_text()
|
24 |
+
if "............" in text:
|
25 |
+
continue
|
26 |
+
#print(text)
|
27 |
+
page_contents.append(text)
|
28 |
+
#break
|
29 |
+
|
30 |
+
|
31 |
+
embedding_model = HuggingFaceInstructEmbeddings(
|
32 |
+
#model_name="hkunlp/instructor-large",
|
33 |
+
#model_name="jinaai/jina-embedding-b-en-v1",
|
34 |
+
model_name="WhereIsAI/UAE-Large-V1",
|
35 |
+
model_kwargs={"device": "cuda"}
|
36 |
+
#model_kwargs={"device": "cpu"}
|
37 |
+
)
|
38 |
+
|
39 |
+
df_documents_chunks = pd.DataFrame({"doc_pages":page_contents})
|
40 |
+
df_documents_chunks["index_id"] = df_documents_chunks.index
|
41 |
+
print(df_documents_chunks)
|
42 |
+
|
43 |
+
def row_to_doc(row):
|
44 |
+
return Document(metadata={
|
45 |
+
'id': row['index_id']
|
46 |
+
}, page_content=row['doc_pages'])
|
47 |
+
|
48 |
+
|
49 |
+
manuuindex_df_processed_documents = df_documents_chunks.apply(lambda row:row_to_doc(row),axis=1).to_list()
|
50 |
+
|
51 |
+
|
52 |
+
COLLECTION_NAME='Manuu_collection'
|
53 |
+
PERSIST_DIR='MANUU_dir4'
|
54 |
+
|
55 |
+
|
56 |
+
if os.path.exists(PERSIST_DIR):
|
57 |
+
print('Existing Collection : ', COLLECTION_NAME)
|
58 |
+
vectordb = Chroma(persist_directory=PERSIST_DIR, collection_name=COLLECTION_NAME, embedding_function=embedding_model)
|
59 |
+
print(f"Collection {vectordb._collection.name} has {vectordb._collection.count()} documents...")
|
60 |
+
else:
|
61 |
+
print('New Collection : ', COLLECTION_NAME)
|
62 |
+
vectordb = Chroma.from_documents(documents=manuuindex_df_processed_documents,
|
63 |
+
embedding=embedding_model,
|
64 |
+
collection_name=COLLECTION_NAME,
|
65 |
+
persist_directory=PERSIST_DIR,
|
66 |
+
collection_metadata=None)
|
67 |
+
client = vectordb.persist() # Save vector database as persistent files in the output folder
|
68 |
+
|
69 |
+
print(f"Collection {vectordb._collection.name} has {vectordb._collection.count()} documents...")
|
70 |
+
|
71 |
+
|
72 |
+
client = InferenceClient(
|
73 |
+
model = "mistralai/Mixtral-8x7B-Instruct-v0.1")
|
74 |
+
|
75 |
+
|
76 |
+
def context_fn(question_text,vectordb):
|
77 |
+
relevant_chunks = vectordb.similarity_search_with_score(
|
78 |
+
query=question_text,
|
79 |
+
k=5,)
|
80 |
+
context_5 = "\n\n\n".join([i[0].page_content for i in relevant_chunks])
|
81 |
+
|
82 |
+
return context_5
|
83 |
+
|
84 |
+
|
85 |
+
def format_prompt(message, history, context_prompt):
|
86 |
+
prompt = "<s>"
|
87 |
+
for user_prompt, bot_response in history:
|
88 |
+
prompt += f"[INST] {user_prompt}. Do not Give information from outside the Document Contexts and general Information[/INST]"
|
89 |
+
prompt += f" {bot_response}\n"
|
90 |
+
prompt += f" CONTEXT:{context_prompt}</s> "
|
91 |
+
prompt += f"[INST] {message} [/INST]"
|
92 |
+
with open('prompts.txt', 'a') as file:
|
93 |
+
print("user_prompt",prompt, file=file)
|
94 |
+
file.close()
|
95 |
+
return prompt
|
96 |
+
|
97 |
+
|
98 |
+
def generate_fn(
|
99 |
+
prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,vectordb = vectordb
|
100 |
+
):
|
101 |
+
temperature = float(temperature)
|
102 |
+
if temperature < 1e-2:
|
103 |
+
temperature = 1e-2
|
104 |
+
top_p = float(top_p)
|
105 |
+
|
106 |
+
generate_kwargs = dict(
|
107 |
+
temperature=temperature,
|
108 |
+
max_new_tokens=max_new_tokens,
|
109 |
+
top_p=top_p,
|
110 |
+
repetition_penalty=repetition_penalty,
|
111 |
+
do_sample=True,
|
112 |
+
seed=42,
|
113 |
+
)
|
114 |
+
context_5 = context_fn(question_text = prompt, vectordb = vectordb)
|
115 |
+
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history, context_5)
|
116 |
+
#print("formatted_prompt",formatted_prompt)
|
117 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
118 |
+
output = ""
|
119 |
+
|
120 |
+
for response in stream:
|
121 |
+
output += response.token.text
|
122 |
+
yield output
|
123 |
+
return output
|
124 |
+
additional_inputs=[
|
125 |
+
gr.Textbox(
|
126 |
+
label="System Prompt",
|
127 |
+
max_lines=1,
|
128 |
+
interactive=True,
|
129 |
+
),
|
130 |
+
gr.Slider(
|
131 |
+
label="Temperature",
|
132 |
+
value=0.7,
|
133 |
+
minimum=0.0,
|
134 |
+
maximum=1.0,
|
135 |
+
step=0.05,
|
136 |
+
interactive=True,
|
137 |
+
info="Higher values produce more diverse outputs",
|
138 |
+
),
|
139 |
+
gr.Slider(
|
140 |
+
label="Max new tokens",
|
141 |
+
value=256,
|
142 |
+
minimum=0,
|
143 |
+
maximum=2048,
|
144 |
+
step=64,
|
145 |
+
interactive=True,
|
146 |
+
info="The maximum numbers of new tokens",
|
147 |
+
),
|
148 |
+
gr.Slider(
|
149 |
+
label="Top-p (nucleus sampling)",
|
150 |
+
value=0.90,
|
151 |
+
minimum=0.0,
|
152 |
+
maximum=1,
|
153 |
+
step=0.05,
|
154 |
+
interactive=True,
|
155 |
+
info="Higher values sample more low-probability tokens",
|
156 |
+
),
|
157 |
+
gr.Slider(
|
158 |
+
label="Repetition penalty",
|
159 |
+
value=1.3,
|
160 |
+
minimum=1.0,
|
161 |
+
maximum=2.0,
|
162 |
+
step=0.05,
|
163 |
+
interactive=True,
|
164 |
+
info="Penalize repeated tokens",
|
165 |
+
)
|
166 |
+
]
|
167 |
+
|
168 |
+
examples=[["Where is Maulana Azad National Urdu University?", None, None, None, None, None,],
|
169 |
+
[ "When was Department of Women Education established?", None, None, None, None, None, ],
|
170 |
+
["Tell me about Department of Public Administration", None, None, None, None, None,],
|
171 |
+
["What are Reservations for SCs/STs/OBCs /Women candidates/EWS Categories?", None, None, None, None, None,],
|
172 |
+
["What is Upper Age Limit limit for Admissions", None, None, None, None, None,],
|
173 |
+
["Fetch Details of Hostel Fee* (2022-23)?", None, None, None, None, None,],
|
174 |
+
["What is Entrance Test Schedule 2023-24?", None, None, None, None, None,],
|
175 |
+
]
|
176 |
+
|
177 |
+
gr.ChatInterface(
|
178 |
+
fn=generate_fn,
|
179 |
+
analytics_enabled=True,
|
180 |
+
|
181 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
182 |
+
additional_inputs=additional_inputs,
|
183 |
+
title="Mixtral 46.7B",
|
184 |
+
examples=examples,
|
185 |
+
concurrency_limit=20,
|
186 |
+
).launch()
|