File size: 14,158 Bytes
3a3b852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6ca15
 
 
 
 
 
 
 
 
 
3a3b852
 
 
badc957
3a3b852
badc957
3a3b852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6ca15
 
 
 
3a3b852
 
 
 
cd6ca15
3a3b852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6ca15
 
 
3a3b852
 
 
cd6ca15
 
 
3a3b852
 
 
 
cd6ca15
 
 
 
3a3b852
 
 
cd6ca15
 
 
3a3b852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6ca15
 
3a3b852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6ca15
3a3b852
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from commonsenseConstraint import evaluation as commonsense_eval
from hardConstraint import evaluation as hard_eval
import json
from tqdm import tqdm
from datasets import load_dataset


def load_line_json_data(filename):
    data = []
    with open(filename, 'r', encoding='utf-8') as f:
        for line in f.read().strip().split('\n'):
            unit = json.loads(line)
            data.append(unit)
    return data

def count_true_false(data):
    """Count the number of true and false values in a list."""
    true_count = data.count(True)
    false_count = data.count(False)
    return true_count, false_count

def statistics(commonsense_statistic):
    """Generate statistics for each level and day in the given data with a different structure."""
    result = {level: {day: {} for day in commonsense_statistic[level]} for level in commonsense_statistic}
    
    for level, days in commonsense_statistic.items():
        for day, dicts in days.items():
            for dct in dicts:
                if dct:
                    for key, data in dct.items():
                        true_count, false_count = count_true_false(data)
                        if key not in result[level][day]:
                            result[level][day][key] = {"true": 0, "false": 0}
                        result[level][day][key]["true"] += true_count
                        result[level][day][key]["false"] += false_count
                
    return result


def paper_term_mapping(commonsense_constraint_record, hard_constraint_record):
    mapping_dict = {'is_valid_information_in_current_city':'Within Current City','is_valid_information_in_sandbox':'Within Sandbox','is_reasonalbe_visiting_city':'Reasonable City Route','is_valid_restaurants':'Diverse Restaurants','is_valid_transportation':'Non-conf. Transportation','is_valid_attractions':'Diverse Attractions','is_valid_accommodation':'Minimum Nights Stay','is_not_absent':'Complete Information','valid_cost':'Budget','valid_room_rule':'Room Rule','valid_cuisine':'Cuisine','valid_room_type':'Room Type','valid_transportation':'Transportation'}
    remap_commonsense_constraint_record = {level:{day:{} for day in [3,5,7]} for level in ['easy','medium','hard']} 
    remap_hard_constraint_record = {level:{day:{} for day in [3,5,7]} for level in ['easy','medium','hard']} 
    for level in commonsense_constraint_record:
        for day in commonsense_constraint_record[level]:
            remap_commonsense_constraint_record[level][day] = {mapping_dict[key] : val for key,val in commonsense_constraint_record[level][day].items()}
            remap_hard_constraint_record[level][day] = {mapping_dict[key] : val for key,val in hard_constraint_record[level][day].items()}
    return remap_commonsense_constraint_record, remap_hard_constraint_record

def eval_score(validation_or_test: str, file_path: str, TOKEN):

    if validation_or_test == 'validation':
        query_data_list  = load_dataset('osunlp/TravelPlannerEval','validation',token=TOKEN, download_mode="force_redownload")['validation']
    elif validation_or_test == 'test':
        query_data_list  = load_dataset('osunlp/TravelPlannerEval','test',token=TOKEN, download_mode="force_redownload")['test']

    query_data_list = [x for x in query_data_list]
    hardConstraint_statistic= {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']} 
    commonsenseConstraint_statistic = {level:{day:[] for day in [3,5,7]} for level in ['easy','medium','hard']} 
    tested_plans = load_line_json_data(file_path)
    delivery_cnt = 0
    plan_constraint_store = []
    for idx in tqdm(range(0,len(query_data_list))):
        query_data = query_data_list[idx]
        tested_plan = tested_plans[idx]
        if type(query_data) == str:
            query_data = eval(query_data)
        if type(tested_plan) == str:
            tested_plan = eval(tested_plan)
        if type(query_data['local_constraint']) == str:
            query_data['local_constraint'] = eval(query_data['local_constraint'])

        if tested_plan['plan']:
            delivery_cnt += 1
            commonsense_info_box = commonsense_eval(query_data,tested_plan['plan'])
        else:
            commonsense_info_box = None

        if commonsense_info_box and commonsense_info_box['is_not_absent'][0] and commonsense_info_box['is_valid_information_in_sandbox'][0]:
            hard_info_box = hard_eval(query_data,tested_plan['plan'])
        else:
            hard_info_box = None

        plan_constraint_store.append({'commonsense_constraint':commonsense_info_box,'hard_constraint':hard_info_box})

        commonsenseConstraint_statistic[query_data['level']][query_data['days']].append(commonsense_info_box)
        hardConstraint_statistic[query_data['level']][query_data['days']].append(hard_info_box)

    constraint_record = {key: {day: {'house rule':0, 'cuisine':0, 'room type':0, 'transportation':0} for day in [3,5,7]} for key in ['medium','hard']}
    constraint_mapping = {'house rule':'valid_room_rule','cuisine':'valid_cuisine','room type':'valid_room_type','transportation':'valid_transportation'}
    mapping_constraint_record = {key: {day: {'valid_room_rule':0, 'valid_cuisine':0, 'valid_room_type':0, 'valid_transportation':0} for day in [3,5,7]} for key in ['medium','hard']}
    count_record = {key:{day:0 for day in [3,5,7]} for key in ['easy','medium','hard']}

    for unit in query_data_list:
        count_record[unit['level']][unit['days']] += 1
        for key in constraint_record['medium'][3]:
            if unit['local_constraint'][key] != None:
                constraint_record[unit['level']][unit['days']][key] += 1
                mapping_constraint_record[unit['level']][unit['days']][constraint_mapping[key]] += 1
    
    commonsenseConstraint_statistic_processed = statistics(commonsenseConstraint_statistic)
    hardConstraint_statistic_processed = statistics(hardConstraint_statistic)


    data_record = {key:{day:[] for day in [3,5,7]} for key in ['easy','medium','hard']}

    constraint_dis_record = {"commonsense":{"pass":0,"total":0},"hard":{"pass":0,"total":0}}
    constraint_count = {key:{day:{} for day in [3,5,7]} for key in ['easy','medium','hard']}

    for constraint in ['commonsense','hard']:
        if constraint == 'commonsense':
            constraint_statistic = commonsenseConstraint_statistic_processed
        elif constraint == 'hard':
            constraint_statistic = hardConstraint_statistic_processed

        key_dict = {'commonsense':['is_valid_information_in_current_city','is_valid_information_in_sandbox','is_reasonalbe_visiting_city','is_valid_restaurants','is_valid_transportation','is_valid_attractions','is_valid_accommodation','is_not_absent'],'hard':['valid_cost','valid_room_rule','valid_cuisine','valid_room_type','valid_transportation']}
        
        for key in constraint_statistic:
            for key2 in constraint_statistic[key]:
                if key2 == -1:
                    print(constraint_statistic[key])
                    exit(0)
                for key3 in key_dict[constraint]:
                    data_record[key][key2].append('0/0')
                    if key3 in constraint_statistic[key][key2]:
                        constraint_dis_record[constraint]['pass'] += constraint_statistic[key][key2][key3]['true']
                        if constraint == 'hard':
                            if key == 'hard' and key3 in ['valid_room_rule','valid_cuisine','valid_room_type','valid_transportation']:
                                data_record[key][key2][-1] = f"{constraint_statistic[key][key2][key3]['true']}/{mapping_constraint_record[key][key2][key3]}"
                                constraint_dis_record[constraint]['total'] += mapping_constraint_record[key][key2][key3]
                                # hardConstraint_statistic_processed[key][key2][key3]['failed delivery'] =  commonsenseConstraint_statistic_processed[key][key2]['is_valid_information_in_current_city']['failed delivery']
                                # hardConstraint_statistic_processed[key][key2][key3]['illegal'] = mapping_constraint_record[key][key2][key3] - hardConstraint_statistic_processed[key][key2][key3]['failed delivery'] - constraint_statistic[key][key2][key3]['true'] - constraint_statistic[key][key2][key3]['false']
                                hardConstraint_statistic_processed[key][key2][key3]['total'] = mapping_constraint_record[key][key2][key3]
                            elif key == 'medium' and key3 in ['valid_room_rule','valid_cuisine','valid_room_type']:
                                data_record[key][key2][-1] = f"{constraint_statistic[key][key2][key3]['true']}/{mapping_constraint_record[key][key2][key3]}"
                                constraint_dis_record[constraint]['total'] += mapping_constraint_record[key][key2][key3]
                                # hardConstraint_statistic_processed[key][key2][key3]['failed delivery'] =  commonsenseConstraint_statistic_processed[key][key2]['is_valid_information_in_current_city']['failed delivery']
                                # hardConstraint_statistic_processed[key][key2][key3]['illegal'] = mapping_constraint_record[key][key2][key3] - hardConstraint_statistic_processed[key][key2][key3]['failed delivery'] - constraint_statistic[key][key2][key3]['true'] - constraint_statistic[key][key2][key3]['false']
                                hardConstraint_statistic_processed[key][key2][key3]['total'] = mapping_constraint_record[key][key2][key3]
                            else:
                                data_record[key][key2][-1] = f"{constraint_statistic[key][key2][key3]['true']}/{count_record[key][key2]}"
                                if key3 in ['valid_cost','valid_visitng_city_number','valid_days']:
                                    constraint_dis_record[constraint]['total'] += count_record[key][key2]
                                    constraint_count[key][key2][key3] = count_record[key][key2]
                                    # hardConstraint_statistic_processed[key][key2][key3]['failed delivery'] = commonsenseConstraint_statistic_processed[key][key2]['is_valid_information_in_current_city']['failed delivery']
                                    # hardConstraint_statistic_processed[key][key2][key3]['illegal'] = count_record[key][key2] - hardConstraint_statistic_processed[key][key2][key3]['failed delivery'] - constraint_statistic[key][key2][key3]['true'] - constraint_statistic[key][key2][key3]['false']
                                    hardConstraint_statistic_processed[key][key2][key3]['total'] = count_record[key][key2]
                        else:
                            data_record[key][key2][-1] = f"{constraint_statistic[key][key2][key3]['true']}/{count_record[key][key2]}"
                            constraint_dis_record[constraint]['total'] += count_record[key][key2]
                            constraint_count[key][key2][key3] = count_record[key][key2]
                            # commonsenseConstraint_statistic_processed[key][key2][key3]['failed delivery'] =  count_record[key][key2] - constraint_statistic[key][key2][key3]['true'] - constraint_statistic[key][key2][key3]['false']
                            commonsenseConstraint_statistic_processed[key][key2][key3]['total'] =  count_record[key][key2]
    final_all_cnt = 0
    final_commonsense_cnt = 0
    final_hardConstraint_cnt = 0
    final_all_cnt_map = {level:0 for level in ['easy','medium','hard']}
    for idx in (range(0,len(query_data_list))):
        if plan_constraint_store[idx]['commonsense_constraint']:
            final_commonsense_pass = True
            final_hardConstraint_pass = True
            for item in plan_constraint_store[idx]['commonsense_constraint']:
                if plan_constraint_store[idx]['commonsense_constraint'][item][0] is not None and not plan_constraint_store[idx]['commonsense_constraint'][item][0]:
                    final_commonsense_pass = False
                    break
            if plan_constraint_store[idx]['hard_constraint'] is None:
                continue
            for item in plan_constraint_store[idx]['hard_constraint']:
                if plan_constraint_store[idx]['hard_constraint'][item][0] is not None and  plan_constraint_store[idx]['hard_constraint'][item][0] == False:
                    final_hardConstraint_pass = False
                    break
                
            if final_commonsense_pass:
                final_commonsense_cnt += 1
            if final_hardConstraint_pass:
                final_hardConstraint_cnt += 1
            if final_commonsense_pass and final_hardConstraint_pass:
                final_all_cnt += 1
                final_all_cnt_map[query_data_list[idx]['level']] += 1

    result = {}

    remap_commonsense_constraint_record, remap_hard_constraint_record = paper_term_mapping(commonsenseConstraint_statistic_processed, hardConstraint_statistic_processed)

    if validation_or_test == 'validation':
        result['Delivery Rate'] = delivery_cnt / 180
        result['Commonsense Constraint Micro Pass Rate'] = constraint_dis_record['commonsense']['pass'] / 1440
        result['Commonsense Constraint Macro Pass Rate'] = final_commonsense_cnt / 180
        result['Hard Constraint Micro Pass Rate'] = constraint_dis_record['hard']['pass'] / 420
        result['Hard Constraint Macro Pass Rate'] = final_hardConstraint_cnt / 180
        result['Final Pass Rate'] = final_all_cnt / 180

    elif validation_or_test == 'test':
        result['Delivery Rate'] = delivery_cnt / 1000
        result['Commonsense Constraint Micro Pass Rate'] = constraint_dis_record['commonsense']['pass'] / 8000
        result['Commonsense Constraint Macro Pass Rate'] = final_commonsense_cnt / 1000
        result['Hard Constraint Micro Pass Rate'] = constraint_dis_record['hard']['pass'] / 2290
        result['Hard Constraint Macro Pass Rate'] = final_hardConstraint_cnt / 1000
        result['Final Pass Rate'] = final_all_cnt / 1000

    return result, {"Commonsense Constraint":remap_commonsense_constraint_record, "Hard Constraint":remap_hard_constraint_record}