import tensorflow as tf import numpy as np import cv2 def outputs(y): return { "Achaemenid architecture": y[0], "American craftsman style": y[1], "American Foursquare architecture": y[2], "Ancient Egyptian architecture": y[3], "Art Deco architecture": y[4], "Art Nouveau architecture": y[5], "Baroque architecture": y[6], "Bauhaus architecture": y[7], "Beaux Arts architecture": y[8], "Byzantine architecture": y[9], "Chicago school_architecture": y[10], "Colonial architecture": y[11], "Deconstructivism": y[12], "Edwardian architecture": y[13], "Georgian architecture": y[14], "Gothic architecture": y[15], "Greek Revival architecture": y[16], "International style": y[17], "Novelty architecture": y[18], "Palladian architecture": y[19], "Postmodern architecture": y[20], "Queen Anne architecture": y[21], "Romanesque architecture": y[22], "Russian Revival_architecture": y[23], "Tudor Revival architecture": y[24], } def efficientnetv2b0_25_arch_styles_Classifier(image): # file_path = f"./images/{file.filename}" # with open(file_path, "wb") as f: # f.write(file.file.read()) resized_image = cv2.resize(image, dsize=( 224, 224), interpolation=cv2.INTER_CUBIC) img = tf.expand_dims(resized_image, 0) efficientnetv2b0 = tf.keras.models.load_model( "models\EfficientNetV2B0.h5") y = efficientnetv2b0.predict(img).reshape(-1) y = (np.round(y, 3)*100).tolist() return outputs(y)