ossaili
na
9b43cf7
import sys
import PIL
import cv2
import torch
import torchvision
import torch.nn as nn
from utils.save_load import load_model
import gradio as gr
from PIL import Image
from torchvision import transforms
import gradio as gr
from pytorch_grad_cam import GradCAM, AblationCAM, FullGrad, EigenGradCAM, LayerCAM
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam import DeepFeatureFactorization
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image, deprocess_image
import numpy as np
from typing import List
from matplotlib import pyplot as plt
from matplotlib.lines import Line2D
labels = [
"Achaemenid architecture",
"American craftsman style",
"American Foursquare architecture",
"Ancient Egyptian architecture",
"Art Deco architecture",
"Art Nouveau architecture",
"Baroque architecture",
"Bauhaus architecture",
"Beaux-Arts architecture",
"Brutalism architecture",
"Byzantine architecture",
"Chicago school architecture",
"Colonial architecture",
"Deconstructivism",
"Edwardian architecture",
"Georgian architecture",
"Gothic architecture",
"Greek Revival architecture",
"International style",
"Islamic architecture",
"Novelty architecture",
"Palladian architecture",
"Postmodern architecture",
"Queen Anne architecture",
"Romanesque architecture",
"Russian Revival architecture",
"Tudor Revival architecture"
]
print(len(labels))
model = torchvision.models.efficientnet_v2_l()
model.classifier = nn.Sequential(
nn.Dropout(p=0.4, inplace=True),
nn.Linear(1280, len(labels), bias=True)
)
load_model(model)
target_layers = model.features[-1]
classifier = model.classifier
cam = LayerCAM(model=model, target_layers=target_layers, use_cuda=False)
dff = DeepFeatureFactorization(
model=model, target_layer=target_layers, computation_on_concepts=classifier)
def show_factorization_on_image(img: np.ndarray,
explanations: np.ndarray,
colors: List[np.ndarray] = None,
image_weight: float = 0.5,
concept_labels: List = None) -> np.ndarray:
n_components = explanations.shape[0]
if colors is None:
# taken from https://github.com/edocollins/DFF/blob/master/utils.py
_cmap = plt.cm.get_cmap('gist_rainbow')
colors = [
np.array(
_cmap(i)) for i in np.arange(
0,
1,
1.0 /
n_components)]
concept_per_pixel = explanations.argmax(axis=0)
masks = []
for i in range(n_components):
mask = np.zeros(shape=(img.shape[0], img.shape[1], 3))
mask[:, :, :] = colors[i][:3]
explanation = explanations[i]
explanation[concept_per_pixel != i] = 0
mask = np.uint8(mask * 255)
mask = cv2.cvtColor(mask, cv2.COLOR_RGB2HSV)
mask[:, :, 2] = np.uint8(255 * explanation)
mask = cv2.cvtColor(mask, cv2.COLOR_HSV2RGB)
mask = np.float32(mask) / 255
masks.append(mask)
mask = np.sum(np.float32(masks), axis=0)
result = img * image_weight + mask * (1 - image_weight)
result = np.uint8(result * 255)
if concept_labels is not None:
px = 1 / plt.rcParams['figure.dpi'] # pixel in inches
fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px))
plt.rcParams['legend.fontsize'] = 6 * result.shape[0] / 256
lw = 5 * result.shape[0] / 256
lines = [Line2D([0], [0], color=colors[i], lw=lw)
for i in range(n_components)]
plt.legend(lines,
concept_labels,
fancybox=False,
shadow=False,
frameon=False,
loc="center")
plt.tight_layout(pad=0, w_pad=0, h_pad=0)
plt.axis('off')
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
plt.close(fig=fig)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
data = cv2.resize(data, (result.shape[1], result.shape[0]))
result = np.vstack((result, data))
return result
def create_labels(concept_scores, top_k=2):
""" Create a list with the image-net category names of the top scoring categories"""
concept_categories = np.argsort(concept_scores, axis=1)[:, ::-1][:, :top_k]
concept_labels_topk = []
for concept_index in range(concept_categories.shape[0]):
categories = concept_categories[concept_index, :]
concept_labels = []
for category in categories:
score = concept_scores[concept_index, category]
label = f"{labels[category].split(',')[0]}:{score*100:.2f}%"
concept_labels.append(label)
concept_labels_topk.append("\n".join(concept_labels))
return concept_labels_topk
def predict(rgb_img, top_k):
print(top_k)
inp_01 = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.4937, 0.5060, 0.5030], [
0.2705, 0.2653, 0.2998]),
transforms.Resize((224, 224)),
])(rgb_img)
model.eval()
with torch.no_grad():
prediction = torch.nn.functional.softmax(
model(inp_01.unsqueeze(0))[0], dim=0)
confidences = {labels[i]: float(prediction[i])
for i in range(len(labels))}
concepts, batch_explanations, concept_outputs = dff(
inp_01.unsqueeze(0), 5)
concept_outputs = torch.softmax(
torch.from_numpy(concept_outputs), axis=-1).numpy()
concept_label_strings = create_labels(concept_outputs, top_k=top_k)
print(inp_01.shape)
print(batch_explanations[0].shape)
res = cv2.resize(np.transpose(
batch_explanations[0], (1, 2, 0)), (rgb_img.size[0], rgb_img.size[1]))
res = np.transpose(res, (2, 0, 1))
print(res.shape)
visualization_01 = show_factorization_on_image(np.float32(rgb_img)/255.0,
res,
image_weight=0.3,
concept_labels=concept_label_strings)
return confidences, visualization_01,
gr.Interface(fn=predict,
inputs=[gr.Image(type="pil"), gr.Slider(
minimum=1, maximum=4, label="Number of top results", step=1)],
outputs=[gr.Label(num_top_classes=5), "image"],
examples=[["./assets/bauhaus.jpg", 1],
["./assets/frank_gehry.jpg", 2], ["./assets/pyramid.jpg", 3]]
).launch()
# examples=["./assets/bauhaus.jpg", "./assets/frank_gehry.jpg", "./assets/pyramid.jpg"]