import streamlit as st import torch import re import json import nltk nltk.download('stopwords') from nltk.corpus import stopwords from model_file import data_preprocessing, preprocess_single_string, LSTMBahdanauAttention from nltk.corpus import stopwords stop_words = set(stopwords.words('russian')) # Load vocabulary mapping with open('vocab_to_int.json', 'r') as file: vocab_to_int = json.load(file) # Load the pre-trained model SEQ_LEN = 96 model_bah = LSTMBahdanauAttention() # Set the new vocabulary size in the model model_bah.load_state_dict(torch.load('final_model_bah.pth')) model_bah.eval() # Function to analyze sentiment def analyze_sentiment(text): preprocessed_text = data_preprocessing(text) sample = preprocess_single_string(preprocessed_text, SEQ_LEN, vocab_to_int) with torch.no_grad(): probability = model_bah(sample.unsqueeze(0))[0].sigmoid().item() return probability # Streamlit UI def lstm_model_page(): st.title("Классификация отзывов лечебных учреждений") user_input = st.text_area("Введите ваш отзыв:") if st.button("Классифицировать"): probability = analyze_sentiment(user_input) if probability > 0.5: st.write("Отзыв положительный 🌟") else: st.write("Отзыв отрицательный 😞")