Spaces:
Runtime error
Runtime error
import gradio as gr | |
import requests | |
from huggingface_hub import list_models, list_datasets, list_spaces | |
from typing import Union | |
# Helper function to get the total storage for models, datasets, or spaces | |
def get_total_storage(namespace, resource_type, oauth_token: Union[gr.OAuthToken, None]): | |
token = oauth_token.token if oauth_token else None | |
if resource_type == "model": | |
resources = list(list_models(author=namespace, token=token)) | |
url_base = "https://huggingface.co/api/models" | |
elif resource_type == "dataset": | |
resources = list(list_datasets(author=namespace, token=token)) | |
url_base = "https://huggingface.co/api/datasets" | |
elif resource_type == "space": | |
resources = list(list_spaces(author=namespace, token=token)) | |
url_base = "https://huggingface.co/api/spaces" | |
total_storage = 0 | |
for resource in resources: | |
resource_id = resource.id | |
url = f"{url_base}/{resource_id}/treesize/main" | |
response = requests.get(url) | |
if response.status_code == 200: | |
size_info = response.json() | |
total_storage += size_info.get("size", 0) | |
return total_storage, len(resources) | |
def get_report(namespace, oauth_token: Union[gr.OAuthToken, None]): | |
# Fetch storage and counts for models, datasets, and spaces | |
model_storage, n_models = get_total_storage(namespace, "model", oauth_token) | |
dataset_storage, n_datasets = get_total_storage(namespace, "dataset", oauth_token) | |
space_storage, n_spaces = get_total_storage(namespace, "space", oauth_token) | |
# Total storage | |
total_storage = model_storage + dataset_storage + space_storage | |
total_storage_gb = total_storage / (1024 ** 3) # Convert from bytes to GB | |
total_storage_tb = total_storage_gb / 1024 # Convert from GB to TB | |
# Cost calculation (1 TB = 20 USD) | |
estimated_cost = total_storage_tb * 20 | |
# Generate a report | |
report = f""" | |
## Hugging Face Storage Report for {namespace} | |
- **Number of Models**: {n_models} | |
- **Number of Datasets**: {n_datasets} | |
- **Number of Spaces**: {n_spaces} | |
- **Total Storage**: {total_storage_gb:.2f} GB ({total_storage_tb:.2f} TB) | |
- **Estimated Cost**: ${estimated_cost:.2f} USD (at 1 TB = $20USD) | |
""" | |
return report | |
css = """ | |
.main_ui_logged_out{opacity: 0.3; pointer-events: none} | |
""" | |
# Create Gradio UI | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Hugging Face Storage Report") | |
gr.LoginButton() | |
namespace = gr.Textbox(label="Enter Namespace (username or org)") | |
output = gr.Markdown() | |
# Button to trigger the report generation | |
report_button = gr.Button("Generate Report") | |
report_button.click(fn=get_report, inputs=namespace, outputs=output, concurrency_limit=10) | |
# Launch the Gradio app | |
demo.launch() | |