Spaces:
Sleeping
Sleeping
Upload 85 files
Browse files- EdgeCape/models/detectors/EdgeCape.py +15 -14
- EdgeCape/models/detectors/__pycache__/EdgeCape.cpython-39.pyc +0 -0
- EdgeCape/models/keypoint_heads/__pycache__/head.cpython-39.pyc +0 -0
- EdgeCape/models/keypoint_heads/head.py +1 -1
- examples/dog1.png +0 -0
- examples/dog2.png +0 -0
- examples/person1.jpeg +0 -0
- examples/person2.jpeg +0 -0
- examples/sofa1.jpg +0 -0
- examples/sofa2.jpg +0 -0
EdgeCape/models/detectors/EdgeCape.py
CHANGED
@@ -99,12 +99,12 @@ class EdgeCape(BasePose):
|
|
99 |
"""Defines the computation performed at every call when training."""
|
100 |
bs, _, h, w = img_q.shape
|
101 |
random_mask = kwargs.get('rand_mask', None)
|
102 |
-
output, initial_proposals, similarity_map, mask_s, reconstructed_keypoints = self.predict(img_s,
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
# parse the img meta to get the target keypoints
|
110 |
device = output.device
|
@@ -149,12 +149,12 @@ class EdgeCape(BasePose):
|
|
149 |
|
150 |
"""Defines the computation performed at every call when testing."""
|
151 |
batch_size, _, img_height, img_width = img_q.shape
|
152 |
-
output, initial_proposals, similarity_map, mask_s, reconstructed_keypoints = self.predict(img_s,
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
predicted_pose = output[-1].detach().cpu().numpy()
|
159 |
result = {}
|
160 |
|
@@ -166,6 +166,7 @@ class EdgeCape(BasePose):
|
|
166 |
result.update({"points": torch.cat((initial_proposals[None], output)).cpu().numpy()})
|
167 |
|
168 |
result.update({"sample_image_file": [img_metas[i]['sample_image_file'] for i in range(len(img_metas))]})
|
|
|
169 |
|
170 |
return result
|
171 |
|
@@ -185,10 +186,10 @@ class EdgeCape(BasePose):
|
|
185 |
feature_q, feature_s = self.extract_features(img_s, img_q)
|
186 |
skeleton_lst = [i['sample_skeleton'][0] for i in img_metas]
|
187 |
|
188 |
-
|
189 |
feature_q, feature_s, target_s, mask_s, skeleton_lst, random_mask=random_mask)
|
190 |
|
191 |
-
return output, initial_proposals, similarity_map, mask_s, reconstructed_keypoints
|
192 |
|
193 |
def extract_features(self, img_s, img_q):
|
194 |
with torch.no_grad():
|
|
|
99 |
"""Defines the computation performed at every call when training."""
|
100 |
bs, _, h, w = img_q.shape
|
101 |
random_mask = kwargs.get('rand_mask', None)
|
102 |
+
output, initial_proposals, similarity_map, mask_s, reconstructed_keypoints, adj = self.predict(img_s,
|
103 |
+
target_s,
|
104 |
+
target_weight_s,
|
105 |
+
img_q,
|
106 |
+
img_metas,
|
107 |
+
random_mask)
|
108 |
|
109 |
# parse the img meta to get the target keypoints
|
110 |
device = output.device
|
|
|
149 |
|
150 |
"""Defines the computation performed at every call when testing."""
|
151 |
batch_size, _, img_height, img_width = img_q.shape
|
152 |
+
output, initial_proposals, similarity_map, mask_s, reconstructed_keypoints, adj = self.predict(img_s,
|
153 |
+
target_s,
|
154 |
+
target_weight_s,
|
155 |
+
img_q,
|
156 |
+
img_metas
|
157 |
+
)
|
158 |
predicted_pose = output[-1].detach().cpu().numpy()
|
159 |
result = {}
|
160 |
|
|
|
166 |
result.update({"points": torch.cat((initial_proposals[None], output)).cpu().numpy()})
|
167 |
|
168 |
result.update({"sample_image_file": [img_metas[i]['sample_image_file'] for i in range(len(img_metas))]})
|
169 |
+
result.update({"skeleton": adj[0].cpu().numpy()})
|
170 |
|
171 |
return result
|
172 |
|
|
|
186 |
feature_q, feature_s = self.extract_features(img_s, img_q)
|
187 |
skeleton_lst = [i['sample_skeleton'][0] for i in img_metas]
|
188 |
|
189 |
+
output, initial_proposals, similarity_map, reconstructed_keypoints, adj = self.keypoint_head_module(
|
190 |
feature_q, feature_s, target_s, mask_s, skeleton_lst, random_mask=random_mask)
|
191 |
|
192 |
+
return output, initial_proposals, similarity_map, mask_s, reconstructed_keypoints, adj
|
193 |
|
194 |
def extract_features(self, img_s, img_q):
|
195 |
with torch.no_grad():
|
EdgeCape/models/detectors/__pycache__/EdgeCape.cpython-39.pyc
CHANGED
Binary files a/EdgeCape/models/detectors/__pycache__/EdgeCape.cpython-39.pyc and b/EdgeCape/models/detectors/__pycache__/EdgeCape.cpython-39.pyc differ
|
|
EdgeCape/models/keypoint_heads/__pycache__/head.cpython-39.pyc
CHANGED
Binary files a/EdgeCape/models/keypoint_heads/__pycache__/head.cpython-39.pyc and b/EdgeCape/models/keypoint_heads/__pycache__/head.cpython-39.pyc differ
|
|
EdgeCape/models/keypoint_heads/head.py
CHANGED
@@ -219,7 +219,7 @@ class TwoStageHead(nn.Module):
|
|
219 |
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(out_points[idx])
|
220 |
output_kpts.append(layer_outputs_unsig.sigmoid())
|
221 |
|
222 |
-
return torch.stack(output_kpts, dim=0), initial_proposals, similarity_map, reconstructed_keypoints
|
223 |
|
224 |
def get_loss(self, output, initial_proposals, similarity_map, target,
|
225 |
target_heatmap, target_weight, target_sizes, reconstructed_keypoints):
|
|
|
219 |
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(out_points[idx])
|
220 |
output_kpts.append(layer_outputs_unsig.sigmoid())
|
221 |
|
222 |
+
return torch.stack(output_kpts, dim=0), initial_proposals, similarity_map, reconstructed_keypoints, adj
|
223 |
|
224 |
def get_loss(self, output, initial_proposals, similarity_map, target,
|
225 |
target_heatmap, target_weight, target_sizes, reconstructed_keypoints):
|
examples/dog1.png
ADDED
examples/dog2.png
ADDED
examples/person1.jpeg
ADDED
examples/person2.jpeg
ADDED
examples/sofa1.jpg
ADDED
examples/sofa2.jpg
ADDED