IlyasMoutawwakil HF staff commited on
Commit
134a499
Β·
1 Parent(s): 04a3faa

updated the llm-perf

Browse files
Files changed (4) hide show
  1. .gitignore +2 -0
  2. app.py +131 -124
  3. requirements.txt +4 -5
  4. src/utils.py +5 -24
.gitignore CHANGED
@@ -3,3 +3,5 @@ __pycache__/
3
  .ipynb_checkpoints
4
  *ipynb
5
  .vscode/
 
 
 
3
  .ipynb_checkpoints
4
  *ipynb
5
  .vscode/
6
+
7
+ dataset/
app.py CHANGED
@@ -1,88 +1,98 @@
1
  import os
 
2
  import gradio as gr
3
  import pandas as pd
4
  import plotly.express as px
5
- from apscheduler.schedulers.background import BackgroundScheduler
 
6
 
 
7
  from src.assets.css_html_js import custom_css
8
  from src.assets.text_content import (
9
  TITLE,
10
- INTRODUCTION_TEXT,
11
  ABOUT_TEXT,
 
12
  EXAMPLE_CONFIG_TEXT,
13
  CITATION_BUTTON_LABEL,
14
  CITATION_BUTTON_TEXT,
15
  )
16
- from src.utils import (
17
- restart_space,
18
- load_dataset_repo,
19
- process_model_name,
20
- process_model_type,
21
- )
22
 
23
- HARDWARE_NAMES = ["A100-80GB", "RTX4090-24GB"]
24
- HARDWARES_EMOJIS = ["πŸ–₯️", "πŸ’»"]
25
- LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
26
  LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
27
- OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
28
-
29
  ALL_COLUMNS_MAPPING = {
 
 
 
 
 
30
  "backend.name": "Backend 🏭",
31
  "backend.torch_dtype": "Dtype πŸ“₯",
32
  "optimizations": "Optimizations πŸ› οΈ",
33
  "quantization": "Quantization πŸ—œοΈ",
34
- #
35
- "weight_class": "Class πŸ‹οΈ",
36
- "model_type": "Type πŸ€—",
37
- #
38
- "generate.peak_memory(MB)": "Memory (MB) ⬇️",
39
- "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️",
 
 
 
 
 
40
  "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) ⬇️",
41
- "best_score": "Best Score (%) ⬆️",
42
- #
43
- "best_scored_model": "Best Scored LLM πŸ†",
44
  }
 
 
 
45
  ALL_COLUMNS_DATATYPES = [
 
 
 
 
 
46
  "str",
47
  "str",
48
  "str",
49
  "str",
50
- #
51
- "str",
52
- "str",
53
- #
 
 
 
 
54
  "number",
55
  "number",
56
  "number",
57
- "str",
58
- #
59
- "markdown",
60
- ]
61
- NO_DUPLICATES_COLUMNS = [
62
- "backend.name",
63
- "backend.torch_dtype",
64
- "optimizations",
65
- "quantization",
66
- #
67
- "weight_class",
68
- "model_type",
69
  ]
70
- SORTING_COLUMN = ["best_score", "generate.latency(s)", "generate.peak_memory(MB)"]
71
- SORTING_ASCENDING = [False, True, True]
72
 
73
- llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
- def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
77
- if llm_perf_dataset_repo:
78
- llm_perf_dataset_repo.git_pull()
79
- # load data
80
- benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv")
81
- clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv")
82
  # merge on model
83
- merged_df = benchmark_df.merge(
84
- clusters_df, left_on="model", right_on="best_scored_model"
85
- )
86
  # transpose energy consumption
87
  merged_df["generate.energy_consumption(tokens/kWh)"] = (
88
  1 / merged_df["generate.energy_consumption(kWh/token)"].fillna(1)
@@ -91,38 +101,44 @@ def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"):
91
  merged_df.loc[
92
  merged_df["generate.energy_consumption(tokens/kWh)"] == 1,
93
  "generate.energy_consumption(tokens/kWh)",
94
- ] = "N/A"
95
- # add optimizations
96
- merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply(
97
- lambda x: "BetterTransformer" if x else "None"
 
 
 
 
 
98
  )
99
  # add quantization scheme
100
- merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply(
101
  lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
102
  )
103
- # sort
 
 
 
 
104
  merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
105
- # drop duplicates
106
- merged_df.drop_duplicates(subset=NO_DUPLICATES_COLUMNS, inplace=True)
 
 
 
107
  return merged_df
108
 
109
 
110
  def get_benchmark_table(bench_df):
111
  copy_df = bench_df.copy()
112
- # filter
113
- copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())]
114
- # rename
115
- copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
116
  # transform
117
- copy_df["Type πŸ€—"] = copy_df["Type πŸ€—"].apply(process_model_type)
118
- copy_df["Best Scored LLM πŸ†"] = copy_df["Best Scored LLM πŸ†"].apply(
119
- process_model_name
120
- )
121
  # process quantization
122
- copy_df["Best Score (%) ⬆️"] = copy_df.apply(
123
- lambda x: f"{x['Best Score (%) ⬆️']}**"
124
  if x["Quantization πŸ—œοΈ"] in ["BnB.4bit", "GPTQ.4bit"]
125
- else x["Best Score (%) ⬆️"],
126
  axis=1,
127
  )
128
  return copy_df
@@ -130,17 +146,18 @@ def get_benchmark_table(bench_df):
130
 
131
  def get_benchmark_chart(bench_df):
132
  copy_df = bench_df.copy()
 
 
133
  # filter latency bigger than 100s
134
- copy_df = copy_df[copy_df["generate.latency(s)"] <= 100]
135
- # rename model_type
136
- copy_df["model_type"] = copy_df["model_type"].apply(process_model_type)
137
  fig = px.scatter(
138
  copy_df,
139
- y="best_score",
140
- x="generate.latency(s)",
141
- size="generate.peak_memory(MB)",
142
- color="model_type",
143
- custom_data=list(ALL_COLUMNS_MAPPING.keys()),
144
  color_discrete_sequence=px.colors.qualitative.Light24,
145
  )
146
  fig.update_layout(
@@ -151,17 +168,17 @@ def get_benchmark_chart(bench_df):
151
  "xanchor": "center",
152
  "yanchor": "top",
153
  },
154
- xaxis_title="Per 1000 tokens Latency (s)",
155
- yaxis_title="Open LLM Score (%)",
156
- legend_title="LLM Type",
157
  width=1200,
158
  height=600,
159
  )
160
  fig.update_traces(
161
  hovertemplate="<br>".join(
162
  [
163
- f"<b>{ALL_COLUMNS_MAPPING[key]}:</b> %{{customdata[{i}]}}"
164
- for i, key in enumerate(ALL_COLUMNS_MAPPING.keys())
165
  ]
166
  )
167
  )
@@ -176,17 +193,17 @@ def filter_query(
176
  quantization_scheme,
177
  score,
178
  memory,
179
- hardware,
180
  ):
181
- raw_df = get_benchmark_df(benchmark=f"Succeeded-1x{hardware}")
182
  filtered_df = raw_df[
183
- raw_df["best_scored_model"].str.lower().str.contains(text.lower())
184
- & raw_df["backend.name"].isin(backends)
185
- & raw_df["backend.torch_dtype"].isin(datatypes)
186
  & (
187
  pd.concat(
188
  [
189
- raw_df["optimizations"].str.contains(optimization)
190
  for optimization in optimizations
191
  ],
192
  axis=1,
@@ -197,7 +214,7 @@ def filter_query(
197
  & (
198
  pd.concat(
199
  [
200
- raw_df["quantization"] == quantization
201
  for quantization in quantization_scheme
202
  ],
203
  axis=1,
@@ -205,8 +222,8 @@ def filter_query(
205
  if len(quantization_scheme) > 0
206
  else True
207
  )
208
- & (raw_df["best_score"] >= score)
209
- & (raw_df["forward.peak_memory(MB)"] <= memory)
210
  ]
211
  filtered_table = get_benchmark_table(filtered_df)
212
  filtered_chart = get_benchmark_chart(filtered_df)
@@ -222,29 +239,29 @@ with demo:
222
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
223
 
224
  with gr.Tabs(elem_classes="leaderboard-tabs"):
225
- hardware_placeholders = {}
226
- hardware_tables = {}
227
- hardware_plots = {}
228
  ####################### HARDWARE TABS #######################
229
- for i, (hardware, emoji) in enumerate(zip(HARDWARE_NAMES, HARDWARES_EMOJIS)):
230
- # dummy placeholder of the hardware name
231
- hardware_placeholders[hardware] = gr.Textbox(value=hardware, visible=False)
232
- with gr.TabItem(f"{hardware} {emoji}", id=i):
233
- with gr.Tabs(elem_classes="hardware-tabs"):
 
234
  # placeholder for full dataframe
235
- hardware_df = get_benchmark_df(benchmark=f"Succeeded-1x{hardware}")
236
  with gr.TabItem("Leaderboard πŸ…", id=0):
237
  gr.HTML(
238
  "πŸ‘‰ Scroll to the right πŸ‘‰ for additional columns.",
239
  elem_id="descriptive-text",
240
  )
241
  # Original leaderboard table
242
- hardware_tables[hardware] = gr.components.Dataframe(
243
- value=get_benchmark_table(hardware_df),
244
  headers=list(ALL_COLUMNS_MAPPING.values()),
245
  datatype=ALL_COLUMNS_DATATYPES,
246
- elem_id="hardware-table",
247
- # show_label=False,
248
  )
249
  with gr.TabItem("Plot πŸ“Š", id=1):
250
  gr.HTML(
@@ -252,13 +269,13 @@ with demo:
252
  elem_id="descriptive-text",
253
  )
254
  # Original leaderboard plot
255
- hardware_plots[hardware] = gr.components.Plot(
256
- value=get_benchmark_chart(hardware_df),
257
- elem_id="hardware-plot",
258
  show_label=False,
259
  )
260
 
261
- ####################### CONTROL PANEL #######################
262
  with gr.TabItem("Control Panel πŸŽ›οΈ", id=2):
263
  gr.HTML(
264
  "Use this control panel to filter the leaderboard's table and plot.", # noqa: E501
@@ -328,7 +345,7 @@ with demo:
328
  value="Filter πŸš€",
329
  elem_id="filter-button",
330
  )
331
- for hardware in HARDWARE_NAMES:
332
  filter_button.click(
333
  filter_query,
334
  [
@@ -339,9 +356,9 @@ with demo:
339
  quantization_checkboxes,
340
  score_slider,
341
  memory_slider,
342
- hardware_placeholders[hardware],
343
  ],
344
- [hardware_tables[hardware], hardware_plots[hardware]],
345
  )
346
 
347
  ####################### ABOUT TAB #######################
@@ -356,18 +373,8 @@ with demo:
356
  value=CITATION_BUTTON_TEXT,
357
  label=CITATION_BUTTON_LABEL,
358
  elem_id="citation-button",
359
- ).style(show_copy_button=True)
360
-
361
-
362
- # Restart space every hour
363
- scheduler = BackgroundScheduler()
364
- scheduler.add_job(
365
- restart_space,
366
- "interval",
367
- seconds=3600,
368
- args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN],
369
- )
370
- scheduler.start()
371
 
372
  # Launch demo
373
- demo.queue(concurrency_count=10).launch()
 
1
  import os
2
+
3
  import gradio as gr
4
  import pandas as pd
5
  import plotly.express as px
6
+ from huggingface_hub.file_download import hf_hub_download
7
+
8
 
9
+ from src.utils import process_model_name, process_model_arch
10
  from src.assets.css_html_js import custom_css
11
  from src.assets.text_content import (
12
  TITLE,
 
13
  ABOUT_TEXT,
14
+ INTRODUCTION_TEXT,
15
  EXAMPLE_CONFIG_TEXT,
16
  CITATION_BUTTON_LABEL,
17
  CITATION_BUTTON_TEXT,
18
  )
 
 
 
 
 
 
19
 
20
+ HF_TOKEN = os.environ.get("HF_TOKEN", None)
 
 
21
  LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
22
+ MACHINE_TO_HARDWARE = {"hf-dgx-01": "A100-80GB πŸ–₯️"}
 
23
  ALL_COLUMNS_MAPPING = {
24
+ # model
25
+ "Model": "Model πŸ€—",
26
+ "Arch": "Arch πŸ›οΈ",
27
+ "Size": "Size πŸ‹οΈ",
28
+ # deployment settings
29
  "backend.name": "Backend 🏭",
30
  "backend.torch_dtype": "Dtype πŸ“₯",
31
  "optimizations": "Optimizations πŸ› οΈ",
32
  "quantization": "Quantization πŸ—œοΈ",
33
+ # throughput measurements
34
+ "decode.throughput(tokens/s)": "Decode Throughput (tokens/s) ⬆️",
35
+ "generate.throughput(tokens/s)": "E2E Throughput (tokens/s) ⬆️",
36
+ # latency measurements
37
+ "forward.latency(s)": "Prefill Latency (s) ⬇️",
38
+ "generate.latency(s)": "E2E Latency (s) ⬇️",
39
+ # memory measurements
40
+ "generate.max_memory_allocated(MB)": "Allocated Memory (MB) ⬇️",
41
+ "generate.max_memory_reserved(MB)": "Reserved Memory (MB) ⬇️",
42
+ "generate.max_memory_used(MB)": "Used Memory (MB) ⬇️",
43
+ # energy measurements
44
  "generate.energy_consumption(tokens/kWh)": "Energy (tokens/kWh) ⬇️",
45
+ # quality measurements
46
+ "Score": "Avg Score (%) ⬆️",
 
47
  }
48
+ SORTING_COLUMN = ["Score", "generate.throughput(tokens/s)"]
49
+ SORTING_ASCENDING = [False, True]
50
+
51
  ALL_COLUMNS_DATATYPES = [
52
+ # open llm
53
+ "markdown",
54
+ "markdown",
55
+ "number",
56
+ # deployment settings
57
  "str",
58
  "str",
59
  "str",
60
  "str",
61
+ # measurements
62
+ "number",
63
+ "number",
64
+ "number",
65
+ "number",
66
+ "number",
67
+ "number",
68
+ "number",
69
  "number",
70
  "number",
71
  "number",
 
 
 
 
 
 
 
 
 
 
 
 
72
  ]
 
 
73
 
 
74
 
75
+ def get_benchmark_df(machine="hf-dgx-01"):
76
+ # download data
77
+ hf_hub_download(
78
+ repo_id="optimum/llm-perf-dataset",
79
+ filename="open-llm.csv",
80
+ local_dir="dataset",
81
+ repo_type="dataset",
82
+ token=HF_TOKEN,
83
+ )
84
+ hf_hub_download(
85
+ repo_id="optimum/llm-perf-dataset",
86
+ filename=f"{machine}/full-report.csv",
87
+ local_dir="dataset",
88
+ repo_type="dataset",
89
+ token=HF_TOKEN,
90
+ )
91
+ open_llm = pd.read_csv("dataset/open-llm.csv")
92
+ full_report = pd.read_csv(f"dataset/{machine}/full-report.csv")
93
 
 
 
 
 
 
 
94
  # merge on model
95
+ merged_df = open_llm.merge(full_report, left_on="Model", right_on="model")
 
 
96
  # transpose energy consumption
97
  merged_df["generate.energy_consumption(tokens/kWh)"] = (
98
  1 / merged_df["generate.energy_consumption(kWh/token)"].fillna(1)
 
101
  merged_df.loc[
102
  merged_df["generate.energy_consumption(tokens/kWh)"] == 1,
103
  "generate.energy_consumption(tokens/kWh)",
104
+ ] = pd.NA
105
+ # add optimizations column
106
+ merged_df["optimizations"] = merged_df[
107
+ ["backend.to_bettertransformer", "backend.use_flash_attention_2"]
108
+ ].apply(
109
+ lambda x: "BetterTransformer"
110
+ if x["backend.to_bettertransformer"]
111
+ else ("FlashAttentionV2" if x["backend.use_flash_attention_2"] else "None"),
112
+ axis=1,
113
  )
114
  # add quantization scheme
115
+ merged_df["quantization"] = merged_df["backend.quantization_scheme"].apply(
116
  lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None")
117
  )
118
+ # add decode throughput
119
+ merged_df["decode.throughput(tokens/s)"] = (
120
+ 1000 / (merged_df["generate.latency(s)"] - merged_df["forward.latency(s)"])
121
+ ).round(2)
122
+ # sort by metric
123
  merged_df.sort_values(by=SORTING_COLUMN, ascending=SORTING_ASCENDING, inplace=True)
124
+ # filter columns
125
+ merged_df = merged_df[list(ALL_COLUMNS_MAPPING.keys())]
126
+ # rename columns
127
+ merged_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True)
128
+
129
  return merged_df
130
 
131
 
132
  def get_benchmark_table(bench_df):
133
  copy_df = bench_df.copy()
 
 
 
 
134
  # transform
135
+ copy_df["Model πŸ€—"] = copy_df["Model πŸ€—"].apply(process_model_name)
136
+ copy_df["Arch πŸ›οΈ"] = copy_df["Arch πŸ›οΈ"].apply(process_model_arch)
 
 
137
  # process quantization
138
+ copy_df["Avg Score (%) ⬆️"] = copy_df.apply(
139
+ lambda x: f"{x['Avg Score (%) ⬆️']}**"
140
  if x["Quantization πŸ—œοΈ"] in ["BnB.4bit", "GPTQ.4bit"]
141
+ else x["Avg Score (%) ⬆️"],
142
  axis=1,
143
  )
144
  return copy_df
 
146
 
147
  def get_benchmark_chart(bench_df):
148
  copy_df = bench_df.copy()
149
+ # transform
150
+ copy_df["Arch πŸ›οΈ"] = copy_df["Arch πŸ›οΈ"].apply(process_model_arch)
151
  # filter latency bigger than 100s
152
+ # copy_df = copy_df[copy_df["E2E Latency (s) ⬇️"] <= 100]
153
+
 
154
  fig = px.scatter(
155
  copy_df,
156
+ y="Avg Score (%) ⬆️",
157
+ x="E2E Latency (s) ⬇️",
158
+ size="Allocated Memory (MB) ⬇️",
159
+ color="Arch πŸ›οΈ",
160
+ custom_data=list(ALL_COLUMNS_MAPPING.values()),
161
  color_discrete_sequence=px.colors.qualitative.Light24,
162
  )
163
  fig.update_layout(
 
168
  "xanchor": "center",
169
  "yanchor": "top",
170
  },
171
+ xaxis_title="Per 1000 Tokens Latency (s)",
172
+ yaxis_title="Avg Open LLM Score (%)",
173
+ legend_title="LLM Architecture",
174
  width=1200,
175
  height=600,
176
  )
177
  fig.update_traces(
178
  hovertemplate="<br>".join(
179
  [
180
+ f"<b>{column}:</b> %{{customdata[{i}]}}"
181
+ for i, column in enumerate(ALL_COLUMNS_MAPPING.values())
182
  ]
183
  )
184
  )
 
193
  quantization_scheme,
194
  score,
195
  memory,
196
+ machine,
197
  ):
198
+ raw_df = get_benchmark_df(machine=machine)
199
  filtered_df = raw_df[
200
+ raw_df["Model πŸ€—"].str.contains(text, case=False)
201
+ & raw_df["Backend 🏭"].isin(backends)
202
+ & raw_df["Dtype πŸ“₯"].isin(datatypes)
203
  & (
204
  pd.concat(
205
  [
206
+ raw_df["Optimizations πŸ› οΈ"].str.contains(optimization, case=False)
207
  for optimization in optimizations
208
  ],
209
  axis=1,
 
214
  & (
215
  pd.concat(
216
  [
217
+ raw_df["Quantization πŸ—œοΈ"].str.contains(quantization, case=False)
218
  for quantization in quantization_scheme
219
  ],
220
  axis=1,
 
222
  if len(quantization_scheme) > 0
223
  else True
224
  )
225
+ & (raw_df["Avg Score (%) ⬆️"] >= score)
226
+ & (raw_df["Allocated Memory (MB) ⬇️"] <= memory)
227
  ]
228
  filtered_table = get_benchmark_table(filtered_df)
229
  filtered_chart = get_benchmark_chart(filtered_df)
 
239
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text")
240
 
241
  with gr.Tabs(elem_classes="leaderboard-tabs"):
242
+ machine_placeholders = {}
243
+ machine_tables = {}
244
+ machine_plots = {}
245
  ####################### HARDWARE TABS #######################
246
+ for i, (machine, hardware) in enumerate(MACHINE_TO_HARDWARE.items()):
247
+ # dummy placeholder of the machine name
248
+ machine_placeholders[machine] = gr.Textbox(value=machine, visible=False)
249
+
250
+ with gr.TabItem(hardware, id=i):
251
+ with gr.Tabs(elem_classes="machine-tabs"):
252
  # placeholder for full dataframe
253
+ machine_df = get_benchmark_df(machine=machine)
254
  with gr.TabItem("Leaderboard πŸ…", id=0):
255
  gr.HTML(
256
  "πŸ‘‰ Scroll to the right πŸ‘‰ for additional columns.",
257
  elem_id="descriptive-text",
258
  )
259
  # Original leaderboard table
260
+ machine_tables[machine] = gr.components.Dataframe(
261
+ value=get_benchmark_table(machine_df),
262
  headers=list(ALL_COLUMNS_MAPPING.values()),
263
  datatype=ALL_COLUMNS_DATATYPES,
264
+ elem_id="machine-table",
 
265
  )
266
  with gr.TabItem("Plot πŸ“Š", id=1):
267
  gr.HTML(
 
269
  elem_id="descriptive-text",
270
  )
271
  # Original leaderboard plot
272
+ machine_plots[machine] = gr.components.Plot(
273
+ value=get_benchmark_chart(machine_df),
274
+ elem_id="machine-plot",
275
  show_label=False,
276
  )
277
 
278
+ ###################### CONTROL PANEL #######################
279
  with gr.TabItem("Control Panel πŸŽ›οΈ", id=2):
280
  gr.HTML(
281
  "Use this control panel to filter the leaderboard's table and plot.", # noqa: E501
 
345
  value="Filter πŸš€",
346
  elem_id="filter-button",
347
  )
348
+ for machine in MACHINE_TO_HARDWARE:
349
  filter_button.click(
350
  filter_query,
351
  [
 
356
  quantization_checkboxes,
357
  score_slider,
358
  memory_slider,
359
+ machine_placeholders[machine],
360
  ],
361
+ [machine_tables[machine], machine_plots[machine]],
362
  )
363
 
364
  ####################### ABOUT TAB #######################
 
373
  value=CITATION_BUTTON_TEXT,
374
  label=CITATION_BUTTON_LABEL,
375
  elem_id="citation-button",
376
+ show_copy_button=True,
377
+ )
 
 
 
 
 
 
 
 
 
 
378
 
379
  # Launch demo
380
+ demo.launch(show_api=False)
requirements.txt CHANGED
@@ -1,5 +1,4 @@
1
- gradio==3.42.0
2
- APScheduler==3.10.4
3
- huggingface_hub==0.16.4
4
- plotly==5.16.1
5
- pandas==2.1.0
 
1
+ huggingface_hub
2
+ gradio
3
+ plotly
4
+ pandas
 
src/utils.py CHANGED
@@ -17,26 +17,7 @@ def change_tab(query_param):
17
  return gr.Tabs.update(selected=0)
18
 
19
 
20
- def restart_space(LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN):
21
- HfApi().restart_space(repo_id=LLM_PERF_LEADERBOARD_REPO, token=OPTIMUM_TOKEN)
22
-
23
-
24
- def load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN):
25
- llm_perf_dataset_repo = None
26
- if OPTIMUM_TOKEN:
27
- print("Loading LLM-Perf-Dataset from Hub...")
28
- llm_perf_dataset_repo = Repository(
29
- local_dir="./llm-perf-dataset",
30
- clone_from=LLM_PERF_DATASET_REPO,
31
- token=OPTIMUM_TOKEN,
32
- repo_type="dataset",
33
- )
34
- llm_perf_dataset_repo.git_pull()
35
-
36
- return llm_perf_dataset_repo
37
-
38
-
39
- LLM_MODEL_TYPES = {
40
  # branded ?
41
  "gpt_bigcode": "GPT-BigCode 🌸",
42
  "RefinedWebModel": "Falcon πŸ¦…",
@@ -69,8 +50,8 @@ def process_model_name(model_name):
69
  return model_hyperlink(link, model_name)
70
 
71
 
72
- def process_model_type(model_type):
73
- if model_type in LLM_MODEL_TYPES:
74
- return LLM_MODEL_TYPES[model_type]
75
  else:
76
- return model_type
 
17
  return gr.Tabs.update(selected=0)
18
 
19
 
20
+ LLM_MODEL_ARCHS = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  # branded ?
22
  "gpt_bigcode": "GPT-BigCode 🌸",
23
  "RefinedWebModel": "Falcon πŸ¦…",
 
50
  return model_hyperlink(link, model_name)
51
 
52
 
53
+ def process_model_arch(model_arch):
54
+ if model_arch in LLM_MODEL_ARCHS:
55
+ return LLM_MODEL_ARCHS[model_arch]
56
  else:
57
+ return model_arch