Spaces:
Running
Running
import gradio as gr | |
import plotly.express as px | |
SCORE_MEMORY_LATENCY_DATA = [ | |
"Model π€", | |
"Arch ποΈ", | |
"Params (B)", | |
"DType π₯", | |
"Backend π", | |
"Optimization π οΈ", | |
"Quantization ποΈ", | |
"Open LLM Score (%)", | |
"Prefill Latency (s)", | |
"Decode Throughput (tokens/s)", | |
"Allocated Memory (MB)", | |
"E2E Latency (s)", | |
# "E2E Throughput (tokens/s)", | |
] | |
def get_lat_score_mem_fig(llm_perf_df): | |
copy_df = llm_perf_df.copy() | |
# plot | |
fig = px.scatter( | |
copy_df, | |
x="E2E Latency (s)", | |
y="Open LLM Score (%)", | |
size="Allocated Memory (MB)", | |
color="Arch ποΈ", | |
custom_data=SCORE_MEMORY_LATENCY_DATA, | |
color_discrete_sequence=px.colors.qualitative.Light24, | |
) | |
fig.update_traces( | |
hovertemplate="<br>".join( | |
[f"<b>{column}:</b> %{{customdata[{i}]}}" for i, column in enumerate(SCORE_MEMORY_LATENCY_DATA)] | |
) | |
) | |
fig.update_layout( | |
title={ | |
"text": "Latency vs. Score vs. Memory", | |
"y": 0.95, | |
"x": 0.5, | |
"xanchor": "center", | |
"yanchor": "top", | |
}, | |
xaxis_title="Time To Generate 256 Tokens (s)", | |
yaxis_title="Open LLM Score (%)", | |
legend_title="LLM Architecture", | |
width=1200, | |
height=600, | |
) | |
return fig | |
def create_lat_score_mem_plot(llm_perf_df): | |
# descriptive text | |
gr.HTML("π Hover over the points π for additional information. ",elem_id="text") | |
# get figure | |
fig = get_lat_score_mem_fig(llm_perf_df) | |
# create plot | |
plot = gr.components.Plot( | |
value=fig, | |
elem_id="plot", | |
show_label=False, | |
) | |
return plot | |