File size: 8,350 Bytes
2290099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import json
import re
from pathlib import Path

from anthropic import Anthropic

from glossary_checker import GlossaryChecker


class TranslationValidator:
    def __init__(self, glossary_checker, anthropic_api_key):
        """Initialize validator with glossary checker and API key."""
        self.checker = glossary_checker
        self.client = Anthropic(api_key=anthropic_api_key)

    def analyze_terms(self, source_text, target_text, found_terms):
        """Analyze terms using Claude to assess their usage and translation in context."""
        if not found_terms:
            return []

        prompt = f"""Analyze each term found in this Tibetan text and its translation:

Tibetan text: {source_text}
English translation: {target_text}

For each term, I'll provide:
- The term
- Expected translations from glossary

Please analyze:"""

        # Add term details to prompt
        for term in found_terms:
            prompt += f"\n\nTerm: {term['source_term']}"
            for cat_name, cat_data in term['categories'].items():
                prompt += f"\nCategory '{cat_name}':"
                prompt += f"\n- Expected translations: {', '.join(cat_data['translations'])}"
                if 'definitions' in cat_data:
                    prompt += f"\n- Definitions: {', '.join(cat_data['definitions'])}"

        prompt += """\n
For each term, provide analysis in JSON format:
[{
  "term": "term1",
  "analysis": {
    "translated_as": "how it appears in the target translation",
    "glossary_translation": "how it should be translated according to the glossary",
    "matching_categories": ["category1", "category2"],
    "translation_assessment": {
      "translated_correctly": true/false,
      "should_be_counted": true/false
    }
  }
}]

Key points for analysis:
2. should_be_counted: true if the term's usage matches any of the glossary definitions
3. glossary_translation: choose the most appropriate translation from glossary based on the context and definitions
4. Consider both the definitions and provided translations when analyzing the term's usage
5. translated_correctly: true if the term matches the glossary definition with these specific conditions:
    5.1. If the Tibetan term is translated with an English word that differs from the glossary's Sanskrit/English term:
        - NOT correct, even if semantically equivalent
        Example:
        - ལུང་། translated as "scriptures" but glossary shows "Āgama" → incorrect
        - རྒྱུད། translated as "continuum" but glossary shows "tantra" → incorrect

    5.2. If the Tibetan term is translated with the same word as in glossary but with grammatical variations:
        - Correct if only differs in:
            * Singular/plural forms (sugata/sugatas)
            * Case variations (buddha/buddha's)
            * Common derived forms (dharma/dharmic)
        Example:
        - བདེ་གཤེགས། translated as "sugatas" with glossary showing "sugata" → correct
        - སངས་རྒྱས། translated as "buddha's" with glossary showing "buddha" → correct

    5.3 The translation must use the exact word given in the glossary (allowing only for basic grammatical variations) rather than synonyms or semantic equivalents."""

        try:
            message = self.client.messages.create(
                model="claude-3-sonnet-20240229",
                max_tokens=2000,
                messages=[{"role": "user", "content": prompt}],
            )

            json_match = re.search(r"\[.*\]", message.content[0].text, re.DOTALL)
            if not json_match:
                return []

            analysis = json.loads(json_match.group())

            # Add analysis to each term
            analyzed_terms = []
            for term in found_terms:
                for item in analysis:
                    if item["term"] == term["source_term"]:
                        # Preserve original term data and add analysis
                        analyzed_term = {
                            "source_term": term["source_term"],
                            "categories": {},  # Keep original categories
                            "analysis": item["analysis"]
                        }

                         # Only include matching categories
                        for cat_name, cat_data in term["categories"].items():
                            if cat_name in item["analysis"]["matching_categories"]:
                                analyzed_term["categories"][cat_name] = cat_data

                        analyzed_terms.append(analyzed_term)
                        break

            return analyzed_terms

        except (json.JSONDecodeError, KeyError) as e:
            print(f"Error parsing LLM response: {e}")
            return []

    def calculate_translation_score(self, found_terms):
        """Calculate translation score based on correct translations."""
        if not found_terms:
            return 0.0

        total_countable_terms = 0
        correctly_translated = 0

        for term in found_terms:
            analysis = term["analysis"]
            assessment = analysis["translation_assessment"]

            # Only count terms that should be counted and match glossary
            if assessment["should_be_counted"]:
                total_countable_terms += 1
                if assessment["translated_correctly"]:
                    correctly_translated += 1

        return (correctly_translated / total_countable_terms * 100) if total_countable_terms > 0 else 100.0

    def validate_translation(self, aligned_file_path):
        """Process aligned file and validate translations."""
        aligned_pairs = self.load_aligned_file(aligned_file_path)

        results = []
        for line_num, (source, target) in enumerate(aligned_pairs, 1):
            # Check against glossary
            check_results = self.checker.check(source, target)

            # Analyze terms
            analyzed_terms = self.analyze_terms(source, target, check_results)

            # Calculate score
            score = self.calculate_translation_score(analyzed_terms)

            results.append({
                "line_number": line_num,
                "source": source,
                "target": target,
                "terms": analyzed_terms,
                "score": score,
            })

        return results

    def load_aligned_file(self, file_path):
        """Load tab-separated source and target segments."""
        aligned_pairs = []
        with open(file_path, "r", encoding="utf-8") as f:
            for line in f:
                line = line.strip()
                if not line:
                    continue

                parts = line.split("\t")
                if len(parts) != 2:
                    print(f"Warning: Skipping malformed line: {line}")
                    continue

                source, target = parts
                aligned_pairs.append((source.strip(), target.strip()))

        return aligned_pairs

    def save_results(self, results, output_path):
        """Save validation results to JSON file."""
        with open(output_path, "w", encoding="utf-8") as f:
            json.dump(
                {
                    "summary": {
                        "total_lines": len(results),
                        "average_score": (
                            sum(r["score"] for r in results) / len(results)
                            if results
                            else 0
                        ),
                    },
                    "lines": results,
                },
                f,
                ensure_ascii=False,
                indent=2,
            )


# Example usage:
if __name__ == "__main__":
    import os

    data_path = Path(__file__).parent / "data"

    # Initialize components
    glossary_path = data_path / "84000_glossary.json"
    checker = GlossaryChecker(glossary_path)
    validator = TranslationValidator(checker, os.getenv("ANTHROPIC_API_KEY"))

    # Process aligned file
    aligned_file = data_path / "example_translations.txt"
    results = validator.validate_translation(aligned_file)

    # Save results
    validator.save_results(results, data_path / "validation_results.json")

    print("Validation completed. Results saved to 'data/validation_results.json'.")