🎨 Webtoon Canvas
Generate webtoon-style images and add text with various styles and positions.
import os import gc import uuid import random import tempfile import time from datetime import datetime from typing import Any from huggingface_hub import login, hf_hub_download import spaces import gradio as gr import numpy as np import torch from PIL import Image, ImageDraw, ImageFont from diffusers import FluxPipeline from transformers import pipeline # 메모리 정리 함수 def clear_memory(): gc.collect() try: if torch.cuda.is_available(): with torch.cuda.device(0): torch.cuda.empty_cache() except: pass # GPU 설정 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): try: with torch.cuda.device(0): torch.cuda.empty_cache() torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True except: print("Warning: Could not configure CUDA settings") # HF 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable") try: login(token=HF_TOKEN) except Exception as e: raise ValueError(f"Failed to login to Hugging Face: {str(e)}") translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=-1) # CPU에서 실행 def translate_to_english(text: str) -> str: """한글 텍스트를 영어로 번역""" try: if any(ord('가') <= ord(char) <= ord('힣') for char in text): translated = translator(text, max_length=128)[0]['translation_text'] print(f"Translated '{text}' to '{translated}'") return translated return text except Exception as e: print(f"Translation error: {str(e)}") return text # FLUX 파이프라인 초기화 부분 수정 print("Initializing FLUX pipeline...") try: pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, use_auth_token=HF_TOKEN, safety_checker=None, device_map="balanced" # 'auto' 대신 'balanced' 사용 ) print("FLUX pipeline initialized successfully") # 메모리 최적화 설정 pipe.enable_attention_slicing(slice_size=1) pipe.enable_model_cpu_offload() print("Pipeline optimization settings applied") # 추가 메모리 최적화 if torch.cuda.is_available(): torch.cuda.empty_cache() torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True except Exception as e: print(f"Error initializing FLUX pipeline: {str(e)}") raise # LoRA 가중치 로드 부분 print("Loading LoRA weights...") try: lora_path = hf_hub_download( repo_id="openfree/myt-flux-fantasy", filename="myt-flux-fantasy.safetensors", use_auth_token=HF_TOKEN ) print(f"LoRA weights downloaded to: {lora_path}") pipe.load_lora_weights(lora_path) pipe.fuse_lora(lora_scale=0.125) print("LoRA weights loaded and fused successfully") except Exception as e: print(f"Error loading LoRA weights: {str(e)}") raise ValueError("Failed to load LoRA weights") # generate_image 함수 수정 @spaces.GPU(duration=60) def generate_image( prompt: str, seed: int, randomize_seed: bool, width: int, height: int, guidance_scale: float, num_inference_steps: int, progress: gr.Progress = gr.Progress() ): try: clear_memory() translated_prompt = translate_to_english(prompt) print(f"Processing prompt: {translated_prompt}") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) with torch.inference_mode(), torch.cuda.amp.autocast(enabled=True): image = pipe( prompt=translated_prompt, width=width, height=height, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator, num_images_per_prompt=1, ).images[0] filepath = save_generated_image(image, translated_prompt) return image, seed except Exception as e: print(f"Generation error: {str(e)}") raise gr.Error(f"Image generation failed: {str(e)}") finally: clear_memory() # 저장 디렉토리 설정 SAVE_DIR = "saved_images" if not os.path.exists(SAVE_DIR): os.makedirs(SAVE_DIR, exist_ok=True) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def save_generated_image(image, prompt): timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") unique_id = str(uuid.uuid4())[:8] filename = f"{timestamp}_{unique_id}.png" filepath = os.path.join(SAVE_DIR, filename) image.save(filepath) return filepath def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width): """텍스트에 외곽선을 추가하는 함수""" for adj_x in range(-stroke_width, stroke_width + 1): for adj_y in range(-stroke_width, stroke_width + 1): draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color) def add_text_to_image( input_image, text, font_size, color, opacity, x_position, y_position, thickness, text_position_type, font_choice ): try: if input_image is None or text.strip() == "": return input_image if not isinstance(input_image, Image.Image): if isinstance(input_image, np.ndarray): image = Image.fromarray(input_image) else: raise ValueError("Unsupported image type") else: image = input_image.copy() if image.mode != 'RGBA': image = image.convert('RGBA') font_files = { "Default": "DejaVuSans.ttf", "Korean Regular": "ko-Regular.ttf" } try: font_file = font_files.get(font_choice, "DejaVuSans.ttf") font = ImageFont.truetype(font_file, int(font_size)) except Exception as e: print(f"Font loading error ({font_choice}): {str(e)}") font = ImageFont.load_default() color_map = { 'White': (255, 255, 255), 'Black': (0, 0, 0), 'Red': (255, 0, 0), 'Green': (0, 255, 0), 'Blue': (0, 0, 255), 'Yellow': (255, 255, 0), 'Purple': (128, 0, 128) } rgb_color = color_map.get(color, (255, 255, 255)) temp_draw = ImageDraw.Draw(image) text_bbox = temp_draw.textbbox((0, 0), text, font=font) text_width = text_bbox[2] - text_bbox[0] text_height = text_bbox[3] - text_bbox[1] actual_x = int((image.width - text_width) * (x_position / 100)) actual_y = int((image.height - text_height) * (y_position / 100)) text_color = (*rgb_color, int(opacity)) txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0)) draw = ImageDraw.Draw(txt_overlay) add_text_with_stroke( draw, text, actual_x, actual_y, font, text_color, int(thickness) ) output_image = Image.alpha_composite(image, txt_overlay) output_image = output_image.convert('RGB') return output_image except Exception as e: print(f"Error in add_text_to_image: {str(e)}") return input_image css = """ footer {display: none} .main-title { text-align: center; margin: 1em 0; padding: 1.5em; background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); border-radius: 15px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); } .main-title h1 { color: #2196F3; font-size: 2.8em; margin-bottom: 0.3em; font-weight: 700; } .main-title p { color: #555; font-size: 1.3em; line-height: 1.4; } .container { max-width: 1200px; margin: auto; padding: 20px; } .input-panel, .output-panel { background: white; padding: 1.5em; border-radius: 12px; box-shadow: 0 2px 8px rgba(0,0,0,0.08); margin-bottom: 1em; } """ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML("""
Generate webtoon-style images and add text with various styles and positions.