Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,547 Bytes
64806f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 |
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast
import os
from huggingface_hub import login, hf_hub_download
import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
from diffusers import FluxPipeline
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import gc
from PIL import Image, ImageDraw, ImageFont
from PIL import Image
from gradio_client import Client, handle_file
import uuid
def clear_memory():
"""๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์"""
gc.collect()
try:
if torch.cuda.is_available():
with torch.cuda.device(0): # ๋ช
์์ ์ผ๋ก device 0 ์ฌ์ฉ
torch.cuda.empty_cache()
except:
pass
# GPU ์ค์
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
if torch.cuda.is_available():
try:
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
except:
print("Warning: Could not configure CUDA settings")
# ๋ฒ์ญ ๋ชจ๋ธ ์ด๊ธฐํ
model_name = "Helsinki-NLP/opus-mt-ko-en"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to('cpu')
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=-1)
def translate_to_english(text: str) -> str:
"""ํ๊ธ ํ
์คํธ๋ฅผ ์์ด๋ก ๋ฒ์ญ"""
try:
if any(ord('๊ฐ') <= ord(char) <= ord('ํฃ') for char in text):
translated = translator(text, max_length=128)[0]['translation_text']
print(f"Translated '{text}' to '{translated}'")
return translated
return text
except Exception as e:
print(f"Translation error: {str(e)}")
return text
BoundingBox = tuple[int, int, int, int]
pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()
# HF ํ ํฐ ์ค์
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("Please set the HF_TOKEN environment variable")
try:
login(token=HF_TOKEN)
except Exception as e:
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
# ๋ชจ๋ธ ์ด๊ธฐํ
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)
gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)
assert isinstance(gd_model, GroundingDinoForObjectDetection)
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.float16,
use_auth_token=HF_TOKEN
)
pipe.enable_attention_slicing(slice_size="auto")
# LoRA ๊ฐ์ค์น ๋ก๋
pipe.load_lora_weights(
hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
)
pipe.fuse_lora(lora_scale=0.125)
# GPU ์ค์ ์ try-except๋ก ๊ฐ์ธ๊ธฐ
try:
if torch.cuda.is_available():
pipe = pipe.to("cuda:0") # ๋ช
์์ ์ผ๋ก cuda:0 ์ง์
except Exception as e:
print(f"Warning: Could not move pipeline to CUDA: {str(e)}")
client = Client("NabeelShar/BiRefNet_for_text_writing")
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
if not bboxes:
return None
for bbox in bboxes:
assert len(bbox) == 4
assert all(isinstance(x, int) for x in bbox)
return (
min(bbox[0] for bbox in bboxes),
min(bbox[1] for bbox in bboxes),
max(bbox[2] for bbox in bboxes),
max(bbox[3] for bbox in bboxes),
)
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
with no_grad():
outputs = gd_model(**inputs)
width, height = img.size
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
outputs,
inputs["input_ids"],
target_sizes=[(height, width)],
)[0]
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
return bbox_union(bboxes.numpy().tolist())
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
assert img.size == mask_img.size
img = img.convert("RGB")
mask_img = mask_img.convert("L")
if defringe:
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
img = Image.fromarray((foreground * 255).astype("uint8"))
result = Image.new("RGBA", img.size)
result.paste(img, (0, 0), mask_img)
return result
def adjust_size_to_multiple_of_8(width: int, height: int) -> tuple[int, int]:
"""์ด๋ฏธ์ง ํฌ๊ธฐ๋ฅผ 8์ ๋ฐฐ์๋ก ์กฐ์ ํ๋ ํจ์"""
new_width = ((width + 7) // 8) * 8
new_height = ((height + 7) // 8) * 8
return new_width, new_height
def calculate_dimensions(aspect_ratio: str, base_size: int = 512) -> tuple[int, int]:
"""์ ํ๋ ๋น์จ์ ๋ฐ๋ผ ์ด๋ฏธ์ง ํฌ๊ธฐ ๊ณ์ฐ"""
if aspect_ratio == "1:1":
return base_size, base_size
elif aspect_ratio == "16:9":
return base_size * 16 // 9, base_size
elif aspect_ratio == "9:16":
return base_size, base_size * 16 // 9
elif aspect_ratio == "4:3":
return base_size * 4 // 3, base_size
return base_size, base_size
@spaces.GPU(duration=20) # 40์ด์์ 20์ด๋ก ๊ฐ์
def generate_background(prompt: str, aspect_ratio: str) -> Image.Image:
try:
width, height = calculate_dimensions(aspect_ratio)
width, height = adjust_size_to_multiple_of_8(width, height)
max_size = 768
if width > max_size or height > max_size:
ratio = max_size / max(width, height)
width = int(width * ratio)
height = int(height * ratio)
width, height = adjust_size_to_multiple_of_8(width, height)
with timer("Background generation"):
try:
with torch.inference_mode():
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=8,
guidance_scale=4.0
).images[0]
except Exception as e:
print(f"Pipeline error: {str(e)}")
return Image.new('RGB', (width, height), 'white')
return image
except Exception as e:
print(f"Background generation error: {str(e)}")
return Image.new('RGB', (512, 512), 'white')
def create_position_grid():
return """
<div class="position-grid" style="display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; width: 150px; margin: auto;">
<button class="position-btn" data-pos="top-left">โ</button>
<button class="position-btn" data-pos="top-center">โ</button>
<button class="position-btn" data-pos="top-right">โ</button>
<button class="position-btn" data-pos="middle-left">โ</button>
<button class="position-btn" data-pos="middle-center">โข</button>
<button class="position-btn" data-pos="middle-right">โ</button>
<button class="position-btn" data-pos="bottom-left">โ</button>
<button class="position-btn" data-pos="bottom-center" data-default="true">โ</button>
<button class="position-btn" data-pos="bottom-right">โ</button>
</div>
"""
def calculate_object_position(position: str, bg_size: tuple[int, int], obj_size: tuple[int, int]) -> tuple[int, int]:
"""์ค๋ธ์ ํธ์ ์์น ๊ณ์ฐ"""
bg_width, bg_height = bg_size
obj_width, obj_height = obj_size
positions = {
"top-left": (0, 0),
"top-center": ((bg_width - obj_width) // 2, 0),
"top-right": (bg_width - obj_width, 0),
"middle-left": (0, (bg_height - obj_height) // 2),
"middle-center": ((bg_width - obj_width) // 2, (bg_height - obj_height) // 2),
"middle-right": (bg_width - obj_width, (bg_height - obj_height) // 2),
"bottom-left": (0, bg_height - obj_height),
"bottom-center": ((bg_width - obj_width) // 2, bg_height - obj_height),
"bottom-right": (bg_width - obj_width, bg_height - obj_height)
}
return positions.get(position, positions["bottom-center"])
def resize_object(image: Image.Image, scale_percent: float) -> Image.Image:
"""์ค๋ธ์ ํธ ํฌ๊ธฐ ์กฐ์ """
width = int(image.width * scale_percent / 100)
height = int(image.height * scale_percent / 100)
return image.resize((width, height), Image.Resampling.LANCZOS)
def combine_with_background(foreground: Image.Image, background: Image.Image,
position: str = "bottom-center", scale_percent: float = 100) -> Image.Image:
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
print(f"Combining with position: {position}, scale: {scale_percent}")
result = background.convert('RGBA')
scaled_foreground = resize_object(foreground, scale_percent)
x, y = calculate_object_position(position, result.size, scaled_foreground.size)
print(f"Calculated position coordinates: ({x}, {y})")
result.paste(scaled_foreground, (x, y), scaled_foreground)
return result
@spaces.GPU(duration=30) # 120์ด์์ 30์ด๋ก ๊ฐ์
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
time_log: list[str] = []
try:
if isinstance(prompt, str):
t0 = time.time()
bbox = gd_detect(img, prompt)
time_log.append(f"detect: {time.time() - t0}")
if not bbox:
print(time_log[0])
raise gr.Error("No object detected")
else:
bbox = prompt
t0 = time.time()
mask = segmenter(img, bbox)
time_log.append(f"segment: {time.time() - t0}")
return mask, bbox, time_log
except Exception as e:
print(f"GPU process error: {str(e)}")
raise
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None, aspect_ratio: str = "1:1") -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
try:
# ์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ ์ ํ
max_size = 1024
if img.width > max_size or img.height > max_size:
ratio = max_size / max(img.width, img.height)
new_size = (int(img.width * ratio), int(img.height * ratio))
img = img.resize(new_size, Image.LANCZOS)
# CUDA ๋ฉ๋ชจ๋ฆฌ ๊ด๋ฆฌ ์์
try:
if torch.cuda.is_available():
current_device = torch.cuda.current_device()
with torch.cuda.device(current_device):
torch.cuda.empty_cache()
except Exception as e:
print(f"CUDA memory management failed: {e}")
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
mask, bbox, time_log = _gpu_process(img, prompt)
masked_alpha = apply_mask(img, mask, defringe=True)
if bg_prompt:
background = generate_background(bg_prompt, aspect_ratio)
combined = background
else:
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
clear_memory()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp:
combined.save(temp.name)
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
except Exception as e:
clear_memory()
print(f"Processing error: {str(e)}")
raise gr.Error(f"Processing failed: {str(e)}")
def on_change_bbox(prompts: dict[str, Any] | None):
return gr.update(interactive=prompts is not None)
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
return gr.update(interactive=bool(img and prompt))
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None,
aspect_ratio: str = "1:1", position: str = "bottom-center",
scale_percent: float = 100) -> tuple[Image.Image, Image.Image]:
try:
if img is None or prompt.strip() == "":
raise gr.Error("Please provide both image and prompt")
print(f"Processing with position: {position}, scale: {scale_percent}") # ๋๋ฒ๊น
์ฉ
try:
prompt = translate_to_english(prompt)
if bg_prompt:
bg_prompt = translate_to_english(bg_prompt)
except Exception as e:
print(f"Translation error (continuing with original text): {str(e)}")
results, _ = _process(img, prompt, bg_prompt, aspect_ratio)
if bg_prompt:
try:
print(f"Using position: {position}") # ๋๋ฒ๊น
์ฉ
# ์์น ๊ฐ ๊ฒ์ฆ
valid_positions = ["top-left", "top-center", "top-right",
"middle-left", "middle-center", "middle-right",
"bottom-left", "bottom-center", "bottom-right"]
if position not in valid_positions:
position = "bottom-center"
print(f"Invalid position, using default: {position}")
combined = combine_with_background(
foreground=results[2],
background=results[1],
position=position,
scale_percent=scale_percent
)
return combined, results[2]
except Exception as e:
print(f"Combination error: {str(e)}")
return results[1], results[2]
return results[1], results[2] # ๊ธฐ๋ณธ ๋ฐํ ์ถ๊ฐ
except Exception as e:
print(f"Error in process_prompt: {str(e)}")
raise gr.Error(str(e))
finally:
clear_memory()
def process_bbox(img: Image.Image, box_input: str) -> tuple[Image.Image, Image.Image]:
try:
if img is None or box_input.strip() == "":
raise gr.Error("Please provide both image and bounding box coordinates")
try:
coords = eval(box_input)
if not isinstance(coords, list) or len(coords) != 4:
raise ValueError("Invalid box format")
bbox = tuple(int(x) for x in coords)
except:
raise gr.Error("Invalid box format. Please provide [xmin, ymin, xmax, ymax]")
# Process the image
results, _ = _process(img, bbox)
# ํฉ์ฑ๋ ์ด๋ฏธ์ง์ ์ถ์ถ๋ ์ด๋ฏธ์ง๋ง ๋ฐํ
return results[1], results[2]
except Exception as e:
raise gr.Error(str(e))
# Event handler functions ์์
def update_process_button(img, prompt):
return gr.update(
interactive=bool(img and prompt),
variant="primary" if bool(img and prompt) else "secondary"
)
def update_box_button(img, box_input):
try:
if img and box_input:
coords = eval(box_input)
if isinstance(coords, list) and len(coords) == 4:
return gr.update(interactive=True, variant="primary")
return gr.update(interactive=False, variant="secondary")
except:
return gr.update(interactive=False, variant="secondary")
css = """
footer {display: none}
.main-title {
text-align: center;
margin: 1em 0;
padding: 1.5em;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
border-radius: 15px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.main-title h1 {
color: #2196F3;
font-size: 2.8em;
margin-bottom: 0.3em;
font-weight: 700;
}
.main-title p {
color: #555;
font-size: 1.3em;
line-height: 1.4;
}
.container {
max-width: 1200px;
margin: auto;
padding: 20px;
}
.input-panel, .output-panel {
background: white;
padding: 1.5em;
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0,0,0,0.08);
margin-bottom: 1em;
}
.controls-panel {
background: #f8f9fa;
padding: 1em;
border-radius: 8px;
margin: 1em 0;
}
.image-display {
min-height: 512px;
display: flex;
align-items: center;
justify-content: center;
background: #fafafa;
border-radius: 8px;
margin: 1em 0;
}
.example-section {
text-align: center;
padding: 2em;
background: #f5f5f5;
border-radius: 12px;
margin-top: 2em;
}
.example-section img {
max-width: 100%;
border-radius: 8px;
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
}
.accordion {
border: 1px solid #e0e0e0;
border-radius: 8px;
margin: 1em 0;
}
.accordion-header {
padding: 1em;
background: #f5f5f5;
cursor: pointer;
}
.accordion-content {
padding: 1em;
display: none;
}
.accordion.open .accordion-content {
display: block;
}
.position-grid {
display: grid;
grid-template-columns: repeat(3, 1fr);
gap: 8px;
margin: 1em 0;
}
.position-btn {
padding: 10px;
border: 1px solid #ddd;
border-radius: 4px;
background: white;
cursor: pointer;
transition: all 0.3s ease;
width: 40px;
height: 40px;
display: flex;
align-items: center;
justify-content: center;
}
.position-btn:hover {
background: #e3f2fd;
}
.position-btn.selected {
background-color: #2196F3;
color: white;
border-color: #1976D2;
}
"""
def add_text_with_stroke(draw, text, x, y, font, text_color, stroke_width):
"""Helper function to draw text with stroke"""
# Draw the stroke/outline
for adj_x in range(-stroke_width, stroke_width + 1):
for adj_y in range(-stroke_width, stroke_width + 1):
draw.text((x + adj_x, y + adj_y), text, font=font, fill=text_color)
def remove_background(image):
# Save the image to a specific location
filename = f"image_{uuid.uuid4()}.png" # Generates a universally unique identifier (UUID) for the filename
image.save(filename)
# Call gradio client for background removal
result = client.predict(images=handle_file(filename), api_name="/image")
return Image.open(result[0])
def superimpose(image_with_text, overlay_image):
# Open image as RGBA to handle transparency
overlay_image = overlay_image.convert("RGBA")
# Paste overlay on the background
image_with_text.paste(overlay_image, (0, 0), overlay_image)
# Save the final image
# image_with_text.save("output_image.png")
return image_with_text
def add_text_to_image(
input_image,
text,
font_size,
color,
opacity,
x_position,
y_position,
thickness,
text_position_type,
font_choice
):
try:
if input_image is None or text.strip() == "":
return input_image
# PIL Image ๊ฐ์ฒด๋ก ๋ณํ
if not isinstance(input_image, Image.Image):
if isinstance(input_image, np.ndarray):
image = Image.fromarray(input_image)
else:
raise ValueError("Unsupported image type")
else:
image = input_image.copy()
# ์ด๋ฏธ์ง๋ฅผ RGBA ๋ชจ๋๋ก ๋ณํ
if image.mode != 'RGBA':
image = image.convert('RGBA')
# ํฐํธ ์ค์
font_files = {
"Default": "DejaVuSans.ttf",
"Korean Regular": "ko-Regular.ttf"
}
try:
font_file = font_files.get(font_choice, "DejaVuSans.ttf")
font = ImageFont.truetype(font_file, int(font_size))
except Exception as e:
print(f"Font loading error ({font_choice}): {str(e)}")
font = ImageFont.load_default()
# ์์ ์ค์
color_map = {
'White': (255, 255, 255),
'Black': (0, 0, 0),
'Red': (255, 0, 0),
'Green': (0, 255, 0),
'Blue': (0, 0, 255),
'Yellow': (255, 255, 0),
'Purple': (128, 0, 128)
}
rgb_color = color_map.get(color, (255, 255, 255))
# ์์ Draw ๊ฐ์ฒด ์์ฑํ์ฌ ํ
์คํธ ํฌ๊ธฐ ๊ณ์ฐ
temp_draw = ImageDraw.Draw(image)
text_bbox = temp_draw.textbbox((0, 0), text, font=font)
text_width = text_bbox[2] - text_bbox[0]
text_height = text_bbox[3] - text_bbox[1]
# ์์น ๊ณ์ฐ
actual_x = int((image.width - text_width) * (x_position / 100))
actual_y = int((image.height - text_height) * (y_position / 100))
# ํ
์คํธ ์์ ์ค์
text_color = (*rgb_color, int(opacity))
if text_position_type == "Text Behind Image":
try:
# ์๋ณธ ์ด๋ฏธ์ง์์ ์ ๊ฒฝ ๊ฐ์ฒด๋ง ์ถ์ถ
foreground = remove_background(image)
# ๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ (์๋ณธ ์ด๋ฏธ์ง ๋ณต์ฌ)
background = image.copy()
# ํ
์คํธ๋ฅผ ๊ทธ๋ฆด ์์ ๋ ์ด์ด ์์ฑ
text_layer = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw_text = ImageDraw.Draw(text_layer)
# ํ
์คํธ ๊ทธ๋ฆฌ๊ธฐ
add_text_with_stroke(
draw_text,
text,
actual_x,
actual_y,
font,
text_color,
int(thickness)
)
# ๋ฐฐ๊ฒฝ์ ํ
์คํธ ํฉ์ฑ
background = Image.alpha_composite(background, text_layer)
# ํ
์คํธ๊ฐ ์๋ ๋ฐฐ๊ฒฝ ์์ ์ ๊ฒฝ ๊ฐ์ฒด ํฉ์ฑ
output_image = Image.alpha_composite(background, foreground)
except Exception as e:
print(f"Error in Text Behind Image processing: {str(e)}")
return input_image
else:
# ํ
์คํธ ์ค๋ฒ๋ ์ด ์์ฑ
txt_overlay = Image.new('RGBA', image.size, (255, 255, 255, 0))
draw = ImageDraw.Draw(txt_overlay)
# ํ
์คํธ๋ฅผ ์ด๋ฏธ์ง ์์ ๊ทธ๋ฆฌ๊ธฐ
add_text_with_stroke(
draw,
text,
actual_x,
actual_y,
font,
text_color,
int(thickness)
)
output_image = Image.alpha_composite(image, txt_overlay)
# RGB๋ก ๋ณํ
output_image = output_image.convert('RGB')
return output_image
except Exception as e:
print(f"Error in add_text_to_image: {str(e)}")
return input_image
def update_position(new_position):
"""์์น ์
๋ฐ์ดํธ ํจ์"""
print(f"Position updated to: {new_position}")
return new_position
def update_controls(bg_prompt):
"""๋ฐฐ๊ฒฝ ํ๋กฌํํธ ์
๋ ฅ ์ฌ๋ถ์ ๋ฐ๋ผ ์ปจํธ๋กค ํ์ ์
๋ฐ์ดํธ"""
is_visible = bool(bg_prompt)
return [
gr.update(visible=is_visible), # aspect_ratio
gr.update(visible=is_visible), # object_controls
]
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
position = gr.State(value="bottom-center") # ์ฌ๊ธฐ๋ก ์ด๋
gr.HTML("""
<div class="main-title">
<h1>๐จ GiniGen Canvas-o3</h1>
<p>Remove background of specified objects, generate new backgrounds, and insert text over or behind images with prompts.</p>
</div>
""")
with gr.Row(equal_height=True):
# ์ผ์ชฝ ํจ๋ (์
๋ ฅ)
with gr.Column(scale=1):
with gr.Group(elem_classes="input-panel"):
input_image = gr.Image(
type="pil",
label="Upload Image",
interactive=True,
height=400
)
text_prompt = gr.Textbox(
label="Object to Extract",
placeholder="Enter what you want to extract...",
interactive=True
)
with gr.Row():
bg_prompt = gr.Textbox(
label="Background Prompt (optional)",
placeholder="Describe the background...",
interactive=True,
scale=3
)
aspect_ratio = gr.Dropdown(
choices=["1:1", "16:9", "9:16", "4:3"],
value="1:1",
label="Aspect Ratio",
interactive=True,
visible=True,
scale=1
)
with gr.Group(elem_classes="controls-panel", visible=False) as object_controls:
with gr.Column(scale=1):
position = gr.State(value="bottom-center") # ์ด๊ธฐ๊ฐ ์ค์
with gr.Row():
btn_top_left = gr.Button("โ", elem_classes="position-btn")
btn_top_center = gr.Button("โ", elem_classes="position-btn")
btn_top_right = gr.Button("โ", elem_classes="position-btn")
with gr.Row():
btn_middle_left = gr.Button("โ", elem_classes="position-btn")
btn_middle_center = gr.Button("โข", elem_classes="position-btn")
btn_middle_right = gr.Button("โ", elem_classes="position-btn")
with gr.Row():
btn_bottom_left = gr.Button("โ", elem_classes="position-btn")
btn_bottom_center = gr.Button("โ", elem_classes="position-btn", value="selected")
btn_bottom_right = gr.Button("โ", elem_classes="position-btn")
with gr.Column(scale=1):
scale_slider = gr.Slider(
minimum=10,
maximum=200,
value=50,
step=5,
label="Object Size (%)"
)
process_btn = gr.Button(
"Process",
variant="primary",
interactive=False,
size="lg"
)
# ์ค๋ฅธ์ชฝ ํจ๋ (์ถ๋ ฅ)
with gr.Column(scale=1):
with gr.Group(elem_classes="output-panel"):
with gr.Tab("Result"):
combined_image = gr.Image(
label="Combined Result",
show_download_button=True,
type="pil",
height=400
)
# ํ
์คํธ ์ฝ์
์ต์
์ Accordion์ผ๋ก ๋ณ๊ฒฝ
with gr.Accordion("Text Insertion Options", open=False):
with gr.Group():
with gr.Row():
text_input = gr.Textbox(
label="Text Content",
placeholder="Enter text to add..."
)
text_position_type = gr.Radio(
choices=["Text Over Image", "Text Behind Image"],
value="Text Over Image",
label="Text Position"
)
with gr.Row():
with gr.Column(scale=1):
font_choice = gr.Dropdown(
choices=["Default", "Korean Regular"], # "Korean Son" ์ ๊ฑฐ
value="Default",
label="Font Selection",
interactive=True
)
font_size = gr.Slider(
minimum=10,
maximum=200,
value=40,
step=5,
label="Font Size"
)
color_dropdown = gr.Dropdown(
choices=["White", "Black", "Red", "Green", "Blue", "Yellow", "Purple"],
value="White",
label="Text Color"
)
thickness = gr.Slider(
minimum=0,
maximum=10,
value=1,
step=1,
label="Text Thickness"
)
with gr.Column(scale=1):
opacity_slider = gr.Slider(
minimum=0,
maximum=255,
value=255,
step=1,
label="Opacity"
)
x_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="Left(0%)~Right(100%)"
)
y_position = gr.Slider(
minimum=0,
maximum=100,
value=50,
step=1,
label="High(0%)~Low(100%)"
)
add_text_btn = gr.Button("Apply Text", variant="primary")
extracted_image = gr.Image(
label="Extracted Object",
show_download_button=True,
type="pil",
height=200
)
# CSS ํด๋์ค๋ฅผ ์ํ ์คํ์ผ ์ถ๊ฐ
gr.HTML("""
<style>
.position-btn.selected {
background-color: #2196F3 !important;
color: white !important;
}
</style>
""")
# ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
position_mapping = {
btn_top_left: "top-left",
btn_top_center: "top-center",
btn_top_right: "top-right",
btn_middle_left: "middle-left",
btn_middle_center: "middle-center",
btn_middle_right: "middle-right",
btn_bottom_left: "bottom-left",
btn_bottom_center: "bottom-center",
btn_bottom_right: "bottom-right"
}
for btn, pos in position_mapping.items():
btn.click(
fn=lambda pos=pos: update_position(pos), # ํด๋ก์ ๋ฌธ์ ํด๊ฒฐ์ ์ํด ์์
outputs=position
)
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ
bg_prompt.change(
fn=update_controls,
inputs=bg_prompt,
outputs=[aspect_ratio, object_controls],
queue=False
)
input_image.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
text_prompt.change(
fn=update_process_button,
inputs=[input_image, text_prompt],
outputs=process_btn,
queue=False
)
process_btn.click(
fn=process_prompt,
inputs=[
input_image,
text_prompt,
bg_prompt,
aspect_ratio,
position,
scale_slider
],
outputs=[combined_image, extracted_image],
queue=True
)
# ์ด๋ฒคํธ ๋ฐ์ธ๋ฉ ๋ถ๋ถ์์
add_text_btn.click(
fn=add_text_to_image,
inputs=[
combined_image, # ์ฒซ ๋ฒ์งธ ์ธ์๋ก ์ด๋ฏธ์ง
text_input, # ๋ ๋ฒ์งธ ์ธ์๋ก ํ
์คํธ
font_size,
color_dropdown,
opacity_slider,
x_position,
y_position,
thickness,
text_position_type,
font_choice
],
outputs=combined_image,
api_name="add_text" # API ์ด๋ฆ ์ถ๊ฐ
)
demo.queue(max_size=5)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=2
) |