Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Jong Wook Kim
commited on
Commit
·
6f40009
1
Parent(s):
cba7812
detector model
Browse files- detector/README.md +49 -0
- detector/dataset.py +86 -0
- detector/download.py +49 -0
- detector/index.html +154 -0
- detector/server.py +120 -0
- detector/train.py +305 -0
- detector/utils.py +62 -0
- requirements.txt +6 -0
detector/README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
GPT-2 Output Detector
|
2 |
+
=====================
|
3 |
+
|
4 |
+
This directory contains the code for working with the GPT-2 output detector model, obtained by fine-tuning a
|
5 |
+
[RoBERTa model](https://ai.facebook.com/blog/roberta-an-optimized-method-for-pretraining-self-supervised-nlp-systems/)
|
6 |
+
with [the outputs of the 1.5B-parameter GPT-2 model](https://github.com/openai/gpt-2-output-dataset).
|
7 |
+
For motivations and discussions regarding the release of this detector model, please check out
|
8 |
+
[out blog post](https://openai.com/blog/gpt-2-6-month-follow-up/) and [report](https://arxiv.org/abs/1908.09203).
|
9 |
+
|
10 |
+
## Downloading a pre-trained detector model
|
11 |
+
|
12 |
+
Download the weights for the fine-tuned `roberta-base` model (478 MB):
|
13 |
+
|
14 |
+
```bash
|
15 |
+
wget https://storage.googleapis.com/gpt-2/detector-models/v1/detector-base.pt
|
16 |
+
```
|
17 |
+
|
18 |
+
or `roberta-large` model (1.5 GB):
|
19 |
+
|
20 |
+
```bash
|
21 |
+
wget https://storage.googleapis.com/gpt-2/detector-models/v1/detector-large.pt
|
22 |
+
```
|
23 |
+
|
24 |
+
These RoBERTa-based models are fine-tuned with a mixture of temperature-1 and nucleus sampling outputs,
|
25 |
+
which should generalize well to outputs generated using different sampling methods.
|
26 |
+
|
27 |
+
## Running a detector model
|
28 |
+
|
29 |
+
You can launch a web UI in which you can enter a text and see the detector model's prediction
|
30 |
+
on whether or not it was generated by a GPT-2 model.
|
31 |
+
|
32 |
+
```bash
|
33 |
+
# (on the top-level directory of this repository)
|
34 |
+
pip install -r requirements.txt
|
35 |
+
python -m detector.server detector-base.pt
|
36 |
+
```
|
37 |
+
|
38 |
+
## Training a new detector model
|
39 |
+
|
40 |
+
You can use the provided training script to train a detector model on a new set of datasets.
|
41 |
+
We recommend using a GPU machine for this task.
|
42 |
+
|
43 |
+
```bash
|
44 |
+
# (on the top-level directory of this repository)
|
45 |
+
pip install -r requirements.txt
|
46 |
+
python -m detector.train
|
47 |
+
```
|
48 |
+
|
49 |
+
The training script supports a number of different options; append `--help` to the command above for usage.
|
detector/dataset.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
from tqdm import tqdm
|
8 |
+
from transformers import PreTrainedTokenizer
|
9 |
+
|
10 |
+
from .download import download
|
11 |
+
|
12 |
+
|
13 |
+
def load_texts(data_file, expected_size=None):
|
14 |
+
texts = []
|
15 |
+
|
16 |
+
for line in tqdm(open(data_file), total=expected_size, desc=f'Loading {data_file}'):
|
17 |
+
texts.append(json.loads(line)['text'])
|
18 |
+
|
19 |
+
return texts
|
20 |
+
|
21 |
+
|
22 |
+
class Corpus:
|
23 |
+
def __init__(self, name, data_dir='data', skip_train=False):
|
24 |
+
download(name, data_dir=data_dir)
|
25 |
+
self.name = name
|
26 |
+
self.train = load_texts(f'{data_dir}/{name}.train.jsonl', expected_size=250000) if not skip_train else None
|
27 |
+
self.test = load_texts(f'{data_dir}/{name}.test.jsonl', expected_size=5000)
|
28 |
+
self.valid = load_texts(f'{data_dir}/{name}.valid.jsonl', expected_size=5000)
|
29 |
+
|
30 |
+
|
31 |
+
class EncodedDataset(Dataset):
|
32 |
+
def __init__(self, real_texts: List[str], fake_texts: List[str], tokenizer: PreTrainedTokenizer,
|
33 |
+
max_sequence_length: int = None, min_sequence_length: int = None, epoch_size: int = None,
|
34 |
+
token_dropout: float = None, seed: int = None):
|
35 |
+
self.real_texts = real_texts
|
36 |
+
self.fake_texts = fake_texts
|
37 |
+
self.tokenizer = tokenizer
|
38 |
+
self.max_sequence_length = max_sequence_length
|
39 |
+
self.min_sequence_length = min_sequence_length
|
40 |
+
self.epoch_size = epoch_size
|
41 |
+
self.token_dropout = token_dropout
|
42 |
+
self.random = np.random.RandomState(seed)
|
43 |
+
|
44 |
+
def __len__(self):
|
45 |
+
return self.epoch_size or len(self.real_texts) + len(self.fake_texts)
|
46 |
+
|
47 |
+
def __getitem__(self, index):
|
48 |
+
if self.epoch_size is not None:
|
49 |
+
label = self.random.randint(2)
|
50 |
+
texts = [self.fake_texts, self.real_texts][label]
|
51 |
+
text = texts[self.random.randint(len(texts))]
|
52 |
+
else:
|
53 |
+
if index < len(self.real_texts):
|
54 |
+
text = self.real_texts[index]
|
55 |
+
label = 1
|
56 |
+
else:
|
57 |
+
text = self.fake_texts[index - len(self.real_texts)]
|
58 |
+
label = 0
|
59 |
+
|
60 |
+
tokens = self.tokenizer.encode(text)
|
61 |
+
|
62 |
+
if self.max_sequence_length is None:
|
63 |
+
tokens = tokens[:self.tokenizer.max_len - 2]
|
64 |
+
else:
|
65 |
+
output_length = min(len(tokens), self.max_sequence_length)
|
66 |
+
if self.min_sequence_length:
|
67 |
+
output_length = self.random.randint(min(self.min_sequence_length, len(tokens)), output_length + 1)
|
68 |
+
start_index = 0 if len(tokens) <= output_length else self.random.randint(0, len(tokens) - output_length + 1)
|
69 |
+
end_index = start_index + output_length
|
70 |
+
tokens = tokens[start_index:end_index]
|
71 |
+
|
72 |
+
if self.token_dropout:
|
73 |
+
dropout_mask = self.random.binomial(1, self.token_dropout, len(tokens)).astype(np.bool)
|
74 |
+
tokens = np.array(tokens)
|
75 |
+
tokens[dropout_mask] = self.tokenizer.unk_token_id
|
76 |
+
tokens = tokens.tolist()
|
77 |
+
|
78 |
+
if self.max_sequence_length is None or len(tokens) == self.max_sequence_length:
|
79 |
+
mask = torch.ones(len(tokens) + 2)
|
80 |
+
return torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id]), mask, label
|
81 |
+
|
82 |
+
padding = [self.tokenizer.pad_token_id] * (self.max_sequence_length - len(tokens))
|
83 |
+
tokens = torch.tensor([self.tokenizer.bos_token_id] + tokens + [self.tokenizer.eos_token_id] + padding)
|
84 |
+
mask = torch.ones(tokens.shape[0])
|
85 |
+
mask[-len(padding):] = 0
|
86 |
+
return tokens, mask, label
|
detector/download.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import requests
|
4 |
+
import torch.distributed as dist
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from .utils import distributed
|
8 |
+
|
9 |
+
ALL_DATASETS = [
|
10 |
+
'webtext',
|
11 |
+
'small-117M', 'small-117M-k40', 'small-117M-nucleus',
|
12 |
+
'medium-345M', 'medium-345M-k40', 'medium-345M-nucleus',
|
13 |
+
'large-762M', 'large-762M-k40', 'large-762M-nucleus',
|
14 |
+
'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus'
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
def download(*datasets, data_dir='data'):
|
19 |
+
os.makedirs(data_dir, exist_ok=True)
|
20 |
+
|
21 |
+
if distributed() and dist.get_rank() > 0:
|
22 |
+
dist.barrier()
|
23 |
+
|
24 |
+
for ds in datasets:
|
25 |
+
assert ds in ALL_DATASETS, f'Unknown dataset {ds}'
|
26 |
+
|
27 |
+
for split in ['train', 'valid', 'test']:
|
28 |
+
filename = ds + "." + split + '.jsonl'
|
29 |
+
output_file = os.path.join(data_dir, filename)
|
30 |
+
if os.path.isfile(output_file):
|
31 |
+
continue
|
32 |
+
|
33 |
+
r = requests.get("https://storage.googleapis.com/gpt-2/output-dataset/v1/" + filename, stream=True)
|
34 |
+
|
35 |
+
with open(output_file, 'wb') as f:
|
36 |
+
file_size = int(r.headers["content-length"])
|
37 |
+
chunk_size = 1000
|
38 |
+
with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
|
39 |
+
# 1k for chunk_size, since Ethernet packet size is around 1500 bytes
|
40 |
+
for chunk in r.iter_content(chunk_size=chunk_size):
|
41 |
+
f.write(chunk)
|
42 |
+
pbar.update(chunk_size)
|
43 |
+
|
44 |
+
if distributed() and dist.get_rank() == 0:
|
45 |
+
dist.barrier()
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
download(*ALL_DATASETS)
|
detector/index.html
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>GPT-2 Output Detector</title>
|
5 |
+
<style type="text/css">
|
6 |
+
* {
|
7 |
+
box-sizing: border-box;
|
8 |
+
}
|
9 |
+
|
10 |
+
body {
|
11 |
+
font-family: sans-serif;
|
12 |
+
margin: 0;
|
13 |
+
}
|
14 |
+
|
15 |
+
h1 {
|
16 |
+
font-weight: lighter;
|
17 |
+
}
|
18 |
+
|
19 |
+
a {
|
20 |
+
text-decoration: none;
|
21 |
+
color: #666;
|
22 |
+
}
|
23 |
+
|
24 |
+
a:hover {
|
25 |
+
text-decoration: underline;
|
26 |
+
}
|
27 |
+
|
28 |
+
#container {
|
29 |
+
margin: auto;
|
30 |
+
width: 960px;
|
31 |
+
}
|
32 |
+
|
33 |
+
#textbox {
|
34 |
+
font-family: serif;
|
35 |
+
font-size: 16pt;
|
36 |
+
width: 100%;
|
37 |
+
height: 480px;
|
38 |
+
padding: 20px 30px;
|
39 |
+
line-height: 1.6;
|
40 |
+
}
|
41 |
+
|
42 |
+
.bar-row {
|
43 |
+
height: 30px;
|
44 |
+
}
|
45 |
+
#real-percentage {
|
46 |
+
width: 80px;
|
47 |
+
vertical-align: top;
|
48 |
+
}
|
49 |
+
#bar-container {
|
50 |
+
width: 800px;
|
51 |
+
background-color: #ff7674;
|
52 |
+
line-height: 0.5;
|
53 |
+
position:relative;
|
54 |
+
top:6px;
|
55 |
+
}
|
56 |
+
#fake-percentage {
|
57 |
+
width: 80px;
|
58 |
+
vertical-align: top;
|
59 |
+
}
|
60 |
+
#bar {
|
61 |
+
display: inline-block;
|
62 |
+
height: 30px;
|
63 |
+
background-color: #83aaff;
|
64 |
+
}
|
65 |
+
em {
|
66 |
+
font-family: monospace;
|
67 |
+
font-style: normal;
|
68 |
+
}
|
69 |
+
</style>
|
70 |
+
</head>
|
71 |
+
<body>
|
72 |
+
<div id="container">
|
73 |
+
<h1>GPT-2 Output Detector Demo</h1>
|
74 |
+
<p>
|
75 |
+
This is an online demo of the
|
76 |
+
<a href="https://github.com/openai/gpt-2-output-dataset/tree/master/detector">GPT-2 output detector</a>
|
77 |
+
model. Enter some text in the text box; the predicted probabilities will be displayed below.
|
78 |
+
<u>The results start to get reliable after around 50 tokens.</u>
|
79 |
+
</p>
|
80 |
+
<textarea id="textbox" placeholder="Enter text here"></textarea>
|
81 |
+
<div><table cellspacing="0" cellpadding="0">
|
82 |
+
<tr class="bar-row" style="vertical-align: bottom;">
|
83 |
+
<td style="text-align: left;">Real</td>
|
84 |
+
<td id="message" style="text-align: center;"></td>
|
85 |
+
<td style="text-align: right;">Fake</td>
|
86 |
+
</tr>
|
87 |
+
<tr class="bar-row">
|
88 |
+
<td id="real-percentage" style="text-align: left; vertical-align: bottom;"></td>
|
89 |
+
<td id="bar-container"><div id="bar" style="width: 50%;"></div></td>
|
90 |
+
<td id="fake-percentage" style="text-align: right; vertical-align: bottom;"></td>
|
91 |
+
</tr>
|
92 |
+
</table></div>
|
93 |
+
</div>
|
94 |
+
<script>
|
95 |
+
let textbox = document.getElementById('textbox');
|
96 |
+
let last_submit = null;
|
97 |
+
|
98 |
+
let real_percentage = document.getElementById('real-percentage');
|
99 |
+
let fake_percentage = document.getElementById('fake-percentage');
|
100 |
+
let bar = document.getElementById('bar');
|
101 |
+
let message = document.getElementById('message');
|
102 |
+
|
103 |
+
function update_graph(result) {
|
104 |
+
if (result === null) {
|
105 |
+
real_percentage.innerHTML = '';
|
106 |
+
fake_percentage.innerHTML = '';
|
107 |
+
bar.style.width = '50%';
|
108 |
+
message.innerHTML = '';
|
109 |
+
} else {
|
110 |
+
let percentage = result.real_probability;
|
111 |
+
real_percentage.innerHTML = (100 * percentage).toFixed(2) + '%';
|
112 |
+
fake_percentage.innerHTML = (100 * (1 - percentage)).toFixed(2) + '%';
|
113 |
+
bar.style.width = (100 * percentage).toFixed(2) + '%';
|
114 |
+
if (result.used_tokens === result.all_tokens) {
|
115 |
+
message.innerHTML = `Prediction based on ${result.used_tokens} tokens`;
|
116 |
+
} else {
|
117 |
+
message.innerHTML = `Prediction based on the first ${result.used_tokens} tokens among the total ${result.all_tokens}`;
|
118 |
+
}
|
119 |
+
}
|
120 |
+
}
|
121 |
+
|
122 |
+
textbox.oninput = () => {
|
123 |
+
if (last_submit) {
|
124 |
+
clearTimeout(last_submit);
|
125 |
+
}
|
126 |
+
if (textbox.value.length === 0) {
|
127 |
+
update_graph(null);
|
128 |
+
return;
|
129 |
+
}
|
130 |
+
message.innerText = 'Predicting ...';
|
131 |
+
last_submit = setTimeout(() => {
|
132 |
+
let req = new XMLHttpRequest();
|
133 |
+
if (textbox.value.length === 0) {
|
134 |
+
update_graph(null);
|
135 |
+
return;
|
136 |
+
}
|
137 |
+
req.open('GET', '/?' + textbox.value, true);
|
138 |
+
req.onreadystatechange = () => {
|
139 |
+
if (req.readyState !== 4) return;
|
140 |
+
if (req.status !== 200) throw new Error("HTTP status: " + req.status);
|
141 |
+
let result = JSON.parse(req.responseText);
|
142 |
+
update_graph(result);
|
143 |
+
};
|
144 |
+
req.send();
|
145 |
+
}, 1000);
|
146 |
+
|
147 |
+
};
|
148 |
+
|
149 |
+
window.addEventListener('DOMContentLoaded', () => {
|
150 |
+
textbox.focus();
|
151 |
+
});
|
152 |
+
</script>
|
153 |
+
</body>
|
154 |
+
</html>
|
detector/server.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
4 |
+
from multiprocessing import Process
|
5 |
+
import subprocess
|
6 |
+
from transformers import RobertaForSequenceClassification, RobertaTokenizer
|
7 |
+
import json
|
8 |
+
import fire
|
9 |
+
import torch
|
10 |
+
from urllib.parse import urlparse, unquote
|
11 |
+
|
12 |
+
|
13 |
+
model: RobertaForSequenceClassification = None
|
14 |
+
tokenizer: RobertaTokenizer = None
|
15 |
+
device: str = None
|
16 |
+
|
17 |
+
def log(*args):
|
18 |
+
print(f"[{os.environ.get('RANK', '')}]", *args, file=sys.stderr)
|
19 |
+
|
20 |
+
|
21 |
+
class RequestHandler(SimpleHTTPRequestHandler):
|
22 |
+
|
23 |
+
def do_GET(self):
|
24 |
+
query = unquote(urlparse(self.path).query)
|
25 |
+
|
26 |
+
if not query:
|
27 |
+
self.begin_content('text/html')
|
28 |
+
|
29 |
+
html = os.path.join(os.path.dirname(__file__), 'index.html')
|
30 |
+
self.wfile.write(open(html).read().encode())
|
31 |
+
return
|
32 |
+
|
33 |
+
self.begin_content('application/json;charset=UTF-8')
|
34 |
+
|
35 |
+
tokens = tokenizer.encode(query)
|
36 |
+
all_tokens = len(tokens)
|
37 |
+
tokens = tokens[:tokenizer.max_len - 2]
|
38 |
+
used_tokens = len(tokens)
|
39 |
+
tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0)
|
40 |
+
mask = torch.ones_like(tokens)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
logits = model(tokens.to(device), attention_mask=mask.to(device))[0]
|
44 |
+
probs = logits.softmax(dim=-1)
|
45 |
+
|
46 |
+
fake, real = probs.detach().cpu().flatten().numpy().tolist()
|
47 |
+
|
48 |
+
self.wfile.write(json.dumps(dict(
|
49 |
+
all_tokens=all_tokens,
|
50 |
+
used_tokens=used_tokens,
|
51 |
+
real_probability=real,
|
52 |
+
fake_probability=fake
|
53 |
+
)).encode())
|
54 |
+
|
55 |
+
def begin_content(self, content_type):
|
56 |
+
self.send_response(200)
|
57 |
+
self.send_header('Content-Type', content_type)
|
58 |
+
self.send_header('Access-Control-Allow-Origin', '*')
|
59 |
+
self.end_headers()
|
60 |
+
|
61 |
+
def log_message(self, format, *args):
|
62 |
+
log(format % args)
|
63 |
+
|
64 |
+
|
65 |
+
def serve_forever(server, model, tokenizer, device):
|
66 |
+
log('Process has started; loading the model ...')
|
67 |
+
globals()['model'] = model.to(device)
|
68 |
+
globals()['tokenizer'] = tokenizer
|
69 |
+
globals()['device'] = device
|
70 |
+
|
71 |
+
log('Ready to serve')
|
72 |
+
server.serve_forever()
|
73 |
+
|
74 |
+
|
75 |
+
def main(checkpoint, port=8080, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
76 |
+
if checkpoint.startswith('gs://'):
|
77 |
+
print(f'Downloading {checkpoint}', file=sys.stderr)
|
78 |
+
subprocess.check_output(['gsutil', 'cp', checkpoint, '.'])
|
79 |
+
checkpoint = os.path.basename(checkpoint)
|
80 |
+
assert os.path.isfile(checkpoint)
|
81 |
+
|
82 |
+
print(f'Loading checkpoint from {checkpoint}')
|
83 |
+
data = torch.load(checkpoint, map_location='cpu')
|
84 |
+
|
85 |
+
model_name = 'roberta-large' if data['args']['large'] else 'roberta-base'
|
86 |
+
model = RobertaForSequenceClassification.from_pretrained(model_name)
|
87 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
88 |
+
|
89 |
+
model.load_state_dict(data['model_state_dict'])
|
90 |
+
model.eval()
|
91 |
+
|
92 |
+
print(f'Starting HTTP server on port {port}', file=sys.stderr)
|
93 |
+
server = HTTPServer(('0.0.0.0', port), RequestHandler)
|
94 |
+
|
95 |
+
# avoid calling CUDA API before forking; doing so in a subprocess is fine.
|
96 |
+
num_workers = int(subprocess.check_output(['python', '-c', 'import torch; print(torch.cuda.device_count())']))
|
97 |
+
|
98 |
+
if num_workers <= 1:
|
99 |
+
serve_forever(server, model, tokenizer, device)
|
100 |
+
else:
|
101 |
+
print(f'Launching {num_workers} worker processes...')
|
102 |
+
|
103 |
+
subprocesses = []
|
104 |
+
|
105 |
+
for i in range(num_workers):
|
106 |
+
os.environ['RANK'] = f'{i}'
|
107 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = f'{i}'
|
108 |
+
process = Process(target=serve_forever, args=(server, model, tokenizer, device))
|
109 |
+
process.start()
|
110 |
+
subprocesses.append(process)
|
111 |
+
|
112 |
+
del os.environ['RANK']
|
113 |
+
del os.environ['CUDA_VISIBLE_DEVICES']
|
114 |
+
|
115 |
+
for process in subprocesses:
|
116 |
+
process.join()
|
117 |
+
|
118 |
+
|
119 |
+
if __name__ == '__main__':
|
120 |
+
fire.Fire(main)
|
detector/train.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Training code for the detector model"""
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import subprocess
|
6 |
+
import sys
|
7 |
+
from itertools import count
|
8 |
+
from multiprocessing import Process
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.distributed as dist
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn.parallel import DistributedDataParallel
|
14 |
+
from torch.optim import Adam
|
15 |
+
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
16 |
+
from tqdm import tqdm
|
17 |
+
from transformers import *
|
18 |
+
|
19 |
+
from .dataset import Corpus, EncodedDataset
|
20 |
+
from .download import download
|
21 |
+
from .utils import summary, distributed
|
22 |
+
|
23 |
+
|
24 |
+
def setup_distributed(port=29500):
|
25 |
+
if not dist.is_available() or not torch.cuda.is_available() or torch.cuda.device_count() <= 1:
|
26 |
+
return 0, 1
|
27 |
+
|
28 |
+
if 'MPIR_CVAR_CH3_INTERFACE_HOSTNAME' in os.environ:
|
29 |
+
from mpi4py import MPI
|
30 |
+
mpi_rank = MPI.COMM_WORLD.Get_rank()
|
31 |
+
mpi_size = MPI.COMM_WORLD.Get_size()
|
32 |
+
|
33 |
+
os.environ["MASTER_ADDR"] = '127.0.0.1'
|
34 |
+
os.environ["MASTER_PORT"] = str(port)
|
35 |
+
|
36 |
+
dist.init_process_group(backend="nccl", world_size=mpi_size, rank=mpi_rank)
|
37 |
+
return mpi_rank, mpi_size
|
38 |
+
|
39 |
+
dist.init_process_group(backend="nccl", init_method="env://")
|
40 |
+
return dist.get_rank(), dist.get_world_size()
|
41 |
+
|
42 |
+
|
43 |
+
def load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
|
44 |
+
max_sequence_length, random_sequence_length, epoch_size=None, token_dropout=None, seed=None):
|
45 |
+
if fake_dataset == 'TWO':
|
46 |
+
download(real_dataset, 'xl-1542M', 'xl-1542M-nucleus', data_dir=data_dir)
|
47 |
+
elif fake_dataset == 'THREE':
|
48 |
+
download(real_dataset, 'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus', data_dir=data_dir)
|
49 |
+
else:
|
50 |
+
download(real_dataset, fake_dataset, data_dir=data_dir)
|
51 |
+
|
52 |
+
real_corpus = Corpus(real_dataset, data_dir=data_dir)
|
53 |
+
|
54 |
+
if fake_dataset == "TWO":
|
55 |
+
real_train, real_valid = real_corpus.train * 2, real_corpus.valid * 2
|
56 |
+
fake_corpora = [Corpus(name, data_dir=data_dir) for name in ['xl-1542M', 'xl-1542M-nucleus']]
|
57 |
+
fake_train = sum([corpus.train for corpus in fake_corpora], [])
|
58 |
+
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
|
59 |
+
elif fake_dataset == "THREE":
|
60 |
+
real_train, real_valid = real_corpus.train * 3, real_corpus.valid * 3
|
61 |
+
fake_corpora = [Corpus(name, data_dir=data_dir) for name in
|
62 |
+
['xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus']]
|
63 |
+
fake_train = sum([corpus.train for corpus in fake_corpora], [])
|
64 |
+
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
|
65 |
+
else:
|
66 |
+
fake_corpus = Corpus(fake_dataset, data_dir=data_dir)
|
67 |
+
|
68 |
+
real_train, real_valid = real_corpus.train, real_corpus.valid
|
69 |
+
fake_train, fake_valid = fake_corpus.train, fake_corpus.valid
|
70 |
+
|
71 |
+
Sampler = DistributedSampler if distributed() and dist.get_world_size() > 1 else RandomSampler
|
72 |
+
|
73 |
+
min_sequence_length = 10 if random_sequence_length else None
|
74 |
+
train_dataset = EncodedDataset(real_train, fake_train, tokenizer, max_sequence_length, min_sequence_length,
|
75 |
+
epoch_size, token_dropout, seed)
|
76 |
+
train_loader = DataLoader(train_dataset, batch_size, sampler=Sampler(train_dataset), num_workers=0)
|
77 |
+
|
78 |
+
validation_dataset = EncodedDataset(real_valid, fake_valid, tokenizer)
|
79 |
+
validation_loader = DataLoader(validation_dataset, batch_size=1, sampler=Sampler(validation_dataset))
|
80 |
+
|
81 |
+
return train_loader, validation_loader
|
82 |
+
|
83 |
+
|
84 |
+
def accuracy_sum(logits, labels):
|
85 |
+
if list(logits.shape) == list(labels.shape) + [2]:
|
86 |
+
# 2-d outputs
|
87 |
+
classification = (logits[..., 0] < logits[..., 1]).long().flatten()
|
88 |
+
else:
|
89 |
+
classification = (logits > 0).long().flatten()
|
90 |
+
assert classification.shape == labels.shape
|
91 |
+
return (classification == labels).float().sum().item()
|
92 |
+
|
93 |
+
|
94 |
+
def train(model: nn.Module, optimizer, device: str, loader: DataLoader, desc='Train'):
|
95 |
+
model.train()
|
96 |
+
|
97 |
+
train_accuracy = 0
|
98 |
+
train_epoch_size = 0
|
99 |
+
train_loss = 0
|
100 |
+
|
101 |
+
with tqdm(loader, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop:
|
102 |
+
for texts, masks, labels in loop:
|
103 |
+
|
104 |
+
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
|
105 |
+
batch_size = texts.shape[0]
|
106 |
+
|
107 |
+
optimizer.zero_grad()
|
108 |
+
loss, logits = model(texts, attention_mask=masks, labels=labels)
|
109 |
+
loss.backward()
|
110 |
+
optimizer.step()
|
111 |
+
|
112 |
+
batch_accuracy = accuracy_sum(logits, labels)
|
113 |
+
train_accuracy += batch_accuracy
|
114 |
+
train_epoch_size += batch_size
|
115 |
+
train_loss += loss.item() * batch_size
|
116 |
+
|
117 |
+
loop.set_postfix(loss=loss.item(), acc=train_accuracy / train_epoch_size)
|
118 |
+
|
119 |
+
return {
|
120 |
+
"train/accuracy": train_accuracy,
|
121 |
+
"train/epoch_size": train_epoch_size,
|
122 |
+
"train/loss": train_loss
|
123 |
+
}
|
124 |
+
|
125 |
+
|
126 |
+
def validate(model: nn.Module, device: str, loader: DataLoader, votes=1, desc='Validation'):
|
127 |
+
model.eval()
|
128 |
+
|
129 |
+
validation_accuracy = 0
|
130 |
+
validation_epoch_size = 0
|
131 |
+
validation_loss = 0
|
132 |
+
|
133 |
+
records = [record for v in range(votes) for record in tqdm(loader, desc=f'Preloading data ... {v}',
|
134 |
+
disable=dist.is_available() and dist.get_rank() > 0)]
|
135 |
+
records = [[records[v * len(loader) + i] for v in range(votes)] for i in range(len(loader))]
|
136 |
+
|
137 |
+
with tqdm(records, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop, torch.no_grad():
|
138 |
+
for example in loop:
|
139 |
+
losses = []
|
140 |
+
logit_votes = []
|
141 |
+
|
142 |
+
for texts, masks, labels in example:
|
143 |
+
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
|
144 |
+
batch_size = texts.shape[0]
|
145 |
+
|
146 |
+
loss, logits = model(texts, attention_mask=masks, labels=labels)
|
147 |
+
losses.append(loss)
|
148 |
+
logit_votes.append(logits)
|
149 |
+
|
150 |
+
loss = torch.stack(losses).mean(dim=0)
|
151 |
+
logits = torch.stack(logit_votes).mean(dim=0)
|
152 |
+
|
153 |
+
batch_accuracy = accuracy_sum(logits, labels)
|
154 |
+
validation_accuracy += batch_accuracy
|
155 |
+
validation_epoch_size += batch_size
|
156 |
+
validation_loss += loss.item() * batch_size
|
157 |
+
|
158 |
+
loop.set_postfix(loss=loss.item(), acc=validation_accuracy / validation_epoch_size)
|
159 |
+
|
160 |
+
return {
|
161 |
+
"validation/accuracy": validation_accuracy,
|
162 |
+
"validation/epoch_size": validation_epoch_size,
|
163 |
+
"validation/loss": validation_loss
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
def _all_reduce_dict(d, device):
|
168 |
+
# wrap in tensor and use reduce to gpu0 tensor
|
169 |
+
output_d = {}
|
170 |
+
for (key, value) in sorted(d.items()):
|
171 |
+
tensor_input = torch.tensor([[value]]).to(device)
|
172 |
+
torch.distributed.all_reduce(tensor_input)
|
173 |
+
output_d[key] = tensor_input.item()
|
174 |
+
return output_d
|
175 |
+
|
176 |
+
|
177 |
+
def run(max_epochs=None,
|
178 |
+
device=None,
|
179 |
+
batch_size=24,
|
180 |
+
max_sequence_length=128,
|
181 |
+
random_sequence_length=False,
|
182 |
+
epoch_size=None,
|
183 |
+
seed=None,
|
184 |
+
data_dir='data',
|
185 |
+
real_dataset='webtext',
|
186 |
+
fake_dataset='xl-1542M-nucleus',
|
187 |
+
token_dropout=None,
|
188 |
+
large=False,
|
189 |
+
learning_rate=2e-5,
|
190 |
+
weight_decay=0,
|
191 |
+
**kwargs):
|
192 |
+
args = locals()
|
193 |
+
rank, world_size = setup_distributed()
|
194 |
+
|
195 |
+
if device is None:
|
196 |
+
device = f'cuda:{rank}' if torch.cuda.is_available() else 'cpu'
|
197 |
+
|
198 |
+
print('rank:', rank, 'world_size:', world_size, 'device:', device)
|
199 |
+
|
200 |
+
import torch.distributed as dist
|
201 |
+
if distributed() and rank > 0:
|
202 |
+
dist.barrier()
|
203 |
+
|
204 |
+
model_name = 'roberta-large' if large else 'roberta-base'
|
205 |
+
tokenization_utils.logger.setLevel('ERROR')
|
206 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
207 |
+
model = RobertaForSequenceClassification.from_pretrained(model_name).to(device)
|
208 |
+
|
209 |
+
if rank == 0:
|
210 |
+
summary(model)
|
211 |
+
if distributed():
|
212 |
+
dist.barrier()
|
213 |
+
|
214 |
+
if world_size > 1:
|
215 |
+
model = DistributedDataParallel(model, [rank], output_device=rank, find_unused_parameters=True)
|
216 |
+
|
217 |
+
train_loader, validation_loader = load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
|
218 |
+
max_sequence_length, random_sequence_length, epoch_size,
|
219 |
+
token_dropout, seed)
|
220 |
+
|
221 |
+
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
222 |
+
epoch_loop = count(1) if max_epochs is None else range(1, max_epochs + 1)
|
223 |
+
|
224 |
+
logdir = os.environ.get("OPENAI_LOGDIR", "logs")
|
225 |
+
os.makedirs(logdir, exist_ok=True)
|
226 |
+
|
227 |
+
from torch.utils.tensorboard import SummaryWriter
|
228 |
+
writer = SummaryWriter(logdir) if rank == 0 else None
|
229 |
+
best_validation_accuracy = 0
|
230 |
+
|
231 |
+
for epoch in epoch_loop:
|
232 |
+
if world_size > 1:
|
233 |
+
train_loader.sampler.set_epoch(epoch)
|
234 |
+
validation_loader.sampler.set_epoch(epoch)
|
235 |
+
|
236 |
+
train_metrics = train(model, optimizer, device, train_loader, f'Epoch {epoch}')
|
237 |
+
validation_metrics = validate(model, device, validation_loader)
|
238 |
+
|
239 |
+
combined_metrics = _all_reduce_dict({**validation_metrics, **train_metrics}, device)
|
240 |
+
|
241 |
+
combined_metrics["train/accuracy"] /= combined_metrics["train/epoch_size"]
|
242 |
+
combined_metrics["train/loss"] /= combined_metrics["train/epoch_size"]
|
243 |
+
combined_metrics["validation/accuracy"] /= combined_metrics["validation/epoch_size"]
|
244 |
+
combined_metrics["validation/loss"] /= combined_metrics["validation/epoch_size"]
|
245 |
+
|
246 |
+
if rank == 0:
|
247 |
+
for key, value in combined_metrics.items():
|
248 |
+
writer.add_scalar(key, value, global_step=epoch)
|
249 |
+
|
250 |
+
if combined_metrics["validation/accuracy"] > best_validation_accuracy:
|
251 |
+
best_validation_accuracy = combined_metrics["validation/accuracy"]
|
252 |
+
|
253 |
+
model_to_save = model.module if hasattr(model, 'module') else model
|
254 |
+
torch.save(dict(
|
255 |
+
epoch=epoch,
|
256 |
+
model_state_dict=model_to_save.state_dict(),
|
257 |
+
optimizer_state_dict=optimizer.state_dict(),
|
258 |
+
args=args
|
259 |
+
),
|
260 |
+
os.path.join(logdir, "best-model.pt")
|
261 |
+
)
|
262 |
+
|
263 |
+
|
264 |
+
if __name__ == '__main__':
|
265 |
+
parser = argparse.ArgumentParser()
|
266 |
+
|
267 |
+
parser.add_argument('--max-epochs', type=int, default=None)
|
268 |
+
parser.add_argument('--device', type=str, default=None)
|
269 |
+
parser.add_argument('--batch-size', type=int, default=24)
|
270 |
+
parser.add_argument('--max-sequence-length', type=int, default=128)
|
271 |
+
parser.add_argument('--random-sequence-length', action='store_true')
|
272 |
+
parser.add_argument('--epoch-size', type=int, default=None)
|
273 |
+
parser.add_argument('--seed', type=int, default=None)
|
274 |
+
parser.add_argument('--data-dir', type=str, default='data')
|
275 |
+
parser.add_argument('--real-dataset', type=str, default='webtext')
|
276 |
+
parser.add_argument('--fake-dataset', type=str, default='xl-1542M-k40')
|
277 |
+
parser.add_argument('--token-dropout', type=float, default=None)
|
278 |
+
|
279 |
+
parser.add_argument('--large', action='store_true', help='use the roberta-large model instead of roberta-base')
|
280 |
+
parser.add_argument('--learning-rate', type=float, default=2e-5)
|
281 |
+
parser.add_argument('--weight-decay', type=float, default=0)
|
282 |
+
args = parser.parse_args()
|
283 |
+
|
284 |
+
nproc = int(subprocess.check_output(['python', '-c', "import torch;"
|
285 |
+
"print(torch.cuda.device_count() if torch.cuda.is_available() else 1)"]))
|
286 |
+
if nproc > 1:
|
287 |
+
print(f'Launching {nproc} processes ...', file=sys.stderr)
|
288 |
+
|
289 |
+
os.environ["MASTER_ADDR"] = '127.0.0.1'
|
290 |
+
os.environ["MASTER_PORT"] = str(29500)
|
291 |
+
os.environ['WORLD_SIZE'] = str(nproc)
|
292 |
+
os.environ['OMP_NUM_THREAD'] = str(1)
|
293 |
+
subprocesses = []
|
294 |
+
|
295 |
+
for i in range(nproc):
|
296 |
+
os.environ['RANK'] = str(i)
|
297 |
+
os.environ['LOCAL_RANK'] = str(i)
|
298 |
+
process = Process(target=run, kwargs=vars(args))
|
299 |
+
process.start()
|
300 |
+
subprocesses.append(process)
|
301 |
+
|
302 |
+
for process in subprocesses:
|
303 |
+
process.join()
|
304 |
+
else:
|
305 |
+
run(**vars(args))
|
detector/utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from functools import reduce
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def summary(model: nn.Module, file=sys.stdout):
|
9 |
+
def repr(model):
|
10 |
+
# We treat the extra repr like the sub-module, one item per line
|
11 |
+
extra_lines = []
|
12 |
+
extra_repr = model.extra_repr()
|
13 |
+
# empty string will be split into list ['']
|
14 |
+
if extra_repr:
|
15 |
+
extra_lines = extra_repr.split('\n')
|
16 |
+
child_lines = []
|
17 |
+
total_params = 0
|
18 |
+
for key, module in model._modules.items():
|
19 |
+
mod_str, num_params = repr(module)
|
20 |
+
mod_str = nn.modules.module._addindent(mod_str, 2)
|
21 |
+
child_lines.append('(' + key + '): ' + mod_str)
|
22 |
+
total_params += num_params
|
23 |
+
lines = extra_lines + child_lines
|
24 |
+
|
25 |
+
for name, p in model._parameters.items():
|
26 |
+
if hasattr(p, 'shape'):
|
27 |
+
total_params += reduce(lambda x, y: x * y, p.shape)
|
28 |
+
|
29 |
+
main_str = model._get_name() + '('
|
30 |
+
if lines:
|
31 |
+
# simple one-liner info, which most builtin Modules will use
|
32 |
+
if len(extra_lines) == 1 and not child_lines:
|
33 |
+
main_str += extra_lines[0]
|
34 |
+
else:
|
35 |
+
main_str += '\n ' + '\n '.join(lines) + '\n'
|
36 |
+
|
37 |
+
main_str += ')'
|
38 |
+
if file is sys.stdout:
|
39 |
+
main_str += ', \033[92m{:,}\033[0m params'.format(total_params)
|
40 |
+
else:
|
41 |
+
main_str += ', {:,} params'.format(total_params)
|
42 |
+
return main_str, total_params
|
43 |
+
|
44 |
+
string, count = repr(model)
|
45 |
+
if file is not None:
|
46 |
+
if isinstance(file, str):
|
47 |
+
file = open(file, 'w')
|
48 |
+
print(string, file=file)
|
49 |
+
file.flush()
|
50 |
+
|
51 |
+
return count
|
52 |
+
|
53 |
+
|
54 |
+
def grad_norm(model: nn.Module):
|
55 |
+
total_norm = 0
|
56 |
+
for p in model.parameters():
|
57 |
+
param_norm = p.grad.data.norm(2)
|
58 |
+
total_norm += param_norm.item() ** 2
|
59 |
+
return total_norm ** 0.5
|
60 |
+
|
61 |
+
def distributed():
|
62 |
+
return dist.is_available() and dist.is_initialized()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=2.0.0
|
2 |
+
fire>=0.2.1
|
3 |
+
requests>=2.22.0
|
4 |
+
tqdm>=4.32.2
|
5 |
+
torch>=1.2.0
|
6 |
+
tensorboard>=1.14.0
|