File size: 8,280 Bytes
9ac5ea2
ebe86df
38e70c4
 
 
 
 
e21b55c
fe8da28
38e70c4
 
c30da09
19d66b4
 
d947152
1bddee8
 
 
a7e9f5d
d947152
 
c30da09
6090892
 
c30da09
fe8da28
19d66b4
 
 
 
 
38e70c4
 
cef1f1e
 
 
 
 
 
 
 
 
 
 
6090892
 
 
 
 
 
 
 
 
38e70c4
 
 
 
 
 
 
 
 
d947152
 
 
 
1bddee8
 
 
 
d947152
 
 
c30da09
 
7de9cd4
 
1bddee8
 
 
a7e9f5d
1bddee8
 
38e70c4
9ac5ea2
 
38e70c4
1bddee8
 
 
7de9cd4
 
1bddee8
a7e9f5d
7de9cd4
 
 
 
 
38e70c4
 
1bddee8
cef1f1e
d947152
 
 
fe8da28
d947152
 
 
 
 
 
 
 
 
fe8da28
d947152
 
 
 
 
 
 
 
38e70c4
 
cef1f1e
 
6090892
38e70c4
19d66b4
6090892
 
 
 
 
 
 
 
19d66b4
6090892
 
 
 
 
 
 
 
 
b5bfbc4
 
cef1f1e
 
 
6090892
9ac5ea2
19d66b4
 
6090892
 
 
 
 
 
 
 
1bddee8
6090892
 
 
 
 
 
 
 
19d66b4
 
 
 
 
38e70c4
cef1f1e
38e70c4
cef1f1e
 
 
 
38e70c4
cef1f1e
 
 
38e70c4
 
bd334dc
38e70c4
bd334dc
12e35a6
38e70c4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import collections
import os
from datetime import datetime, timedelta
import json
from http.server import SimpleHTTPRequestHandler, ThreadingHTTPServer
from urllib.parse import parse_qs, urlparse

from huggingface_hub import list_datasets, login, HfFolder
from datasets import load_dataset, DatasetDict, Dataset
import numpy as np

datasets = {
    "stars": load_dataset("open-source-metrics/preprocessed_stars"),
    "issues": load_dataset("open-source-metrics/preprocessed_issues"),
    "pip": load_dataset("open-source-metrics/preprocessed_pip").sort('day'),
}

external_datasets = {
    "pip": load_dataset("open-source-metrics/pip-external").sort('day'),
    "stars": load_dataset("open-source-metrics/stars-external"),
    "issues": load_dataset("open-source-metrics/issues-external")
}
external_datasets['pip']['openai_python'] = external_datasets['pip']['openai']
del external_datasets['pip']['openai']


def cut_output(full_output: Dataset, library_names: list):
    output = full_output.to_dict().items()
    output = {k: v + [None] for k, v in output if k in library_names + ['day']}
    last_value = max(output[k].index(None) for k in output.keys() if k != 'day')
    return {k: v[:last_value] for k, v in output.items()}


def parse_name_and_options(path):
    url = urlparse(path)
    query = parse_qs(url.query)
    library_names = query.get("input", None)[0]
    library_names = library_names.split(',')
    options = query.get("options", None)[0]
    options = options.split(',')

    return library_names, options


def sum_of_lists(lists):
    def _sum(items):
        while None in items:
            items.remove(None)
        return sum(items)

    return [_sum(list(a)) for a in zip(*lists)]


class RequestHandler(SimpleHTTPRequestHandler):
    def do_GET(self):
        print(self.path)
        if self.path == "/":
            self.path = "index.html"

            return SimpleHTTPRequestHandler.do_GET(self)

        if self.path.startswith("/initialize"):
            dataset_with_most_splits = max(datasets['stars'].column_names.values(), key=len)

            if 'day' in dataset_with_most_splits:
                dataset_with_most_splits.remove('day')

            external_dataset_keys = {k: set(v.keys()) for k, v in external_datasets.items()}
            external_dataset_with_most_splits = max([d for d in external_dataset_keys.values()], key=len)

            for external in external_dataset_with_most_splits:
                dataset_with_most_splits.remove(external)

            warnings = []

            print("Initializing ...")

            for k, v in external_dataset_keys.items():
                if len(v) < len(external_dataset_with_most_splits):
                    warnings.append(
                        f"The {k} external dataset does not contain all splits. Missing: {external_dataset_with_most_splits - v}"
                        f".\nSelecting that split to show the pip install numbers will not work."
                    )

            dataset_with_most_splits = list(dataset_with_most_splits)
            dataset_with_most_splits.sort()

            external_dataset_with_most_splits = list(external_dataset_with_most_splits)
            external_dataset_with_most_splits.sort()

            res = {
                'internal': dataset_with_most_splits,
                'external': external_dataset_with_most_splits,
                'warnings': warnings
            }

            print(f"Returning: {res}")

            return self.response(res)

        if self.path.startswith("/retrievePipInstalls"):
            errors = []
            library_names, options = parse_name_and_options(self.path)
            cumulated = '1' in options
            week_over_week = '2' in options


            if week_over_week:
                if cumulated:
                    cumulated_dict = {
                        'Cumulated': sum_of_lists([v for k, v in datasets['pip']['wow'].to_dict().items() if k in library_names]),
                        'day': datasets['pip']['wow'].to_dict()['day']
                    }
                    return self.response(cumulated_dict)
                else:
                    return self.response({k: v for k, v in datasets['pip']['wow'].to_dict().items() if k in library_names + ['day']})
            else:
                if cumulated:
                    cumulated_dict = {
                        'Cumulated': sum_of_lists([v for k, v in datasets['pip']['raw'].to_dict().items() if k in library_names]),
                        'day': datasets['pip']['raw'].to_dict()['day']
                    }
                    return self.response(cumulated_dict)
                else:
                    return self.response({k: v for k, v in datasets['pip']['raw'].to_dict().items() if k in library_names + ['day']})

        if self.path.startswith("/retrieveStars"):
            library_names, options = parse_name_and_options(self.path)
            week_over_week = '1' in options
            cumulated = '2' in options

            if week_over_week:
                if cumulated:
                    cumulated_dict = {
                        'Cumulated': sum_of_lists([v for k, v in datasets['stars']['wow'].to_dict().items() if k in library_names]),
                        'day': datasets['stars']['wow'].to_dict()['day']
                    }
                    return self.response(cumulated_dict)
                else:
                    return self.response({k: v for k, v in datasets['stars']['wow'].to_dict().items() if k in library_names + ['day']})
            else:
                if cumulated:
                    cumulated_dict = {
                        'Cumulated': sum_of_lists([v for k, v in datasets['stars']['raw'].to_dict().items() if k in library_names]),
                        'day': datasets['stars']['raw'].to_dict()['day']
                    }
                    return self.response(cumulated_dict)
                else:
                    return self.response({k: v for k, v in datasets['stars']['raw'].to_dict().items() if k in library_names + ['day']})


        if self.path.startswith("/retrieveIssues"):
            library_names, options = parse_name_and_options(self.path)
            exclude_org_members = '1' in options
            week_over_week = '2' in options
            cumulated = '3' in options

            if week_over_week:
                if exclude_org_members:
                    if cumulated:
                        cumulated_dict = {
                            'Cumulated': sum_of_lists([v for k, v in datasets['issues']['eom_wow'].to_dict().items() if k in library_names]),
                            'day': datasets['issues']['eom_wow'].to_dict()['day']
                        }
                        return self.response(cumulated_dict)
                    else:
                        return self.response(cut_output(datasets['issues']['eom_wow'], library_names))
                else:
                    if cumulated:
                        cumulated_dict = {
                            'Cumulated': sum_of_lists([v for k, v in datasets['issues']['wow'].to_dict().items() if k in library_names]),
                            'day': datasets['issues']['wow'].to_dict()['day']
                        }
                        return self.response(cumulated_dict)
                    else:
                        return self.response({k: v for k, v in datasets['issues']['wow'].to_dict().items() if k in library_names + ['day']})
            else:
                if exclude_org_members:
                    return self.response({k: v for k, v in datasets['issues']['eom'].to_dict().items() if k in library_names + ['day']})
                else:
                    return self.response({k: v for k, v in datasets['issues']['raw'].to_dict().items() if k in library_names + ['day']})

        return SimpleHTTPRequestHandler.do_GET(self)

    def response(self, output):
        self.send_response(200)
        self.send_header("Content-Type", "application/json")
        self.end_headers()

        self.wfile.write(json.dumps(output).encode("utf-8"))

        return SimpleHTTPRequestHandler


server = ThreadingHTTPServer(("", 7860), RequestHandler)

print("Running on port 7860")

server.serve_forever()