kz209 commited on
Commit
f9f4138
Β·
1 Parent(s): 111801d

switch models

Browse files
Files changed (2) hide show
  1. app.py +2 -1
  2. pages/summarization_playground.py +15 -1
app.py CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
3
  from pages.arena import create_arena
4
  from pages.summarization_playground import create_summarization_interface
5
  from pages.leaderboard import create_leaderboard
 
6
 
7
  def welcome_message():
8
  return """
@@ -27,7 +28,7 @@ with gr.Blocks() as demo:
27
  with gr.TabItem("Leaderboard"):
28
  create_leaderboard()
29
  with gr.TabItem("Batch_Evaluation"):
30
- create_arena()
31
  with gr.TabItem("Demo_of_Streaming"):
32
  create_arena()
33
 
 
3
  from pages.arena import create_arena
4
  from pages.summarization_playground import create_summarization_interface
5
  from pages.leaderboard import create_leaderboard
6
+ from pages.batch_evaluation import create_batch_evaluation_interface
7
 
8
  def welcome_message():
9
  return """
 
28
  with gr.TabItem("Leaderboard"):
29
  create_leaderboard()
30
  with gr.TabItem("Batch_Evaluation"):
31
+ create_batch_evaluation_interface()
32
  with gr.TabItem("Demo_of_Streaming"):
33
  create_arena()
34
 
pages/summarization_playground.py CHANGED
@@ -5,8 +5,12 @@ import random
5
  from utils.model import Model
6
  from utils.data import dataset
7
 
 
 
 
8
  load_dotenv()
9
 
 
10
  model = {model_name: Model(model_name) for model_name in Model.__model_list__}
11
 
12
  random_label = 'πŸ”€ Random dialogue from dataset'
@@ -28,7 +32,17 @@ Back in Boston, Kidd is going to rely on Lively even more. He'll play close to 3
28
  }
29
 
30
  def generate_answer(sources, model, model_name, prompt):
31
- content = prompt + '\n' + sources
 
 
 
 
 
 
 
 
 
 
32
  answer = model[model_name].gen(content)
33
 
34
  return answer
 
5
  from utils.model import Model
6
  from utils.data import dataset
7
 
8
+ import gc
9
+ import torch
10
+
11
  load_dotenv()
12
 
13
+ __model_on_gpu__ = ''
14
  model = {model_name: Model(model_name) for model_name in Model.__model_list__}
15
 
16
  random_label = 'πŸ”€ Random dialogue from dataset'
 
32
  }
33
 
34
  def generate_answer(sources, model, model_name, prompt):
35
+ content = prompt + '\n' + sources + '\n\n'
36
+ global __model_on_gpu__
37
+
38
+ if __model_on_gpu__ != model_name:
39
+ model[__model_on_gpu__].cpu()
40
+ gc.collect()
41
+ torch.cuda.empty_cache()
42
+
43
+ model[model_name].gpu()
44
+ __model_on_gpu__ = model_name
45
+
46
  answer = model[model_name].gen(content)
47
 
48
  return answer