Spaces:
onrdmr
/
Running on Zero

IDM-VTON
update IDM-VTON Demo
938e515
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Callable, Dict, Optional, Tuple, Union
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, get_norm
from detectron2.structures import ImageList
from detectron2.utils.registry import Registry
from ..backbone import Backbone, build_backbone
from ..postprocessing import sem_seg_postprocess
from .build import META_ARCH_REGISTRY
__all__ = [
"SemanticSegmentor",
"SEM_SEG_HEADS_REGISTRY",
"SemSegFPNHead",
"build_sem_seg_head",
]
SEM_SEG_HEADS_REGISTRY = Registry("SEM_SEG_HEADS")
SEM_SEG_HEADS_REGISTRY.__doc__ = """
Registry for semantic segmentation heads, which make semantic segmentation predictions
from feature maps.
"""
@META_ARCH_REGISTRY.register()
class SemanticSegmentor(nn.Module):
"""
Main class for semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
backbone: Backbone,
sem_seg_head: nn.Module,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
"""
super().__init__()
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.register_buffer("pixel_mean", torch.tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.tensor(pixel_std).view(-1, 1, 1), False)
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
return {
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "sem_seg": semantic segmentation ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
Each dict is the output for one input image.
The dict contains one key "sem_seg" whose value is a
Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(
images,
self.backbone.size_divisibility,
padding_constraints=self.backbone.padding_constraints,
)
features = self.backbone(images.tensor)
if "sem_seg" in batched_inputs[0]:
targets = [x["sem_seg"].to(self.device) for x in batched_inputs]
targets = ImageList.from_tensors(
targets,
self.backbone.size_divisibility,
self.sem_seg_head.ignore_value,
self.backbone.padding_constraints,
).tensor
else:
targets = None
results, losses = self.sem_seg_head(features, targets)
if self.training:
return losses
processed_results = []
for result, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
r = sem_seg_postprocess(result, image_size, height, width)
processed_results.append({"sem_seg": r})
return processed_results
def build_sem_seg_head(cfg, input_shape):
"""
Build a semantic segmentation head from `cfg.MODEL.SEM_SEG_HEAD.NAME`.
"""
name = cfg.MODEL.SEM_SEG_HEAD.NAME
return SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)
@SEM_SEG_HEADS_REGISTRY.register()
class SemSegFPNHead(nn.Module):
"""
A semantic segmentation head described in :paper:`PanopticFPN`.
It takes a list of FPN features as input, and applies a sequence of
3x3 convs and upsampling to scale all of them to the stride defined by
``common_stride``. Then these features are added and used to make final
predictions by another 1x1 conv layer.
"""
@configurable
def __init__(
self,
input_shape: Dict[str, ShapeSpec],
*,
num_classes: int,
conv_dims: int,
common_stride: int,
loss_weight: float = 1.0,
norm: Optional[Union[str, Callable]] = None,
ignore_value: int = -1,
):
"""
NOTE: this interface is experimental.
Args:
input_shape: shapes (channels and stride) of the input features
num_classes: number of classes to predict
conv_dims: number of output channels for the intermediate conv layers.
common_stride: the common stride that all features will be upscaled to
loss_weight: loss weight
norm (str or callable): normalization for all conv layers
ignore_value: category id to be ignored during training.
"""
super().__init__()
input_shape = sorted(input_shape.items(), key=lambda x: x[1].stride)
if not len(input_shape):
raise ValueError("SemSegFPNHead(input_shape=) cannot be empty!")
self.in_features = [k for k, v in input_shape]
feature_strides = [v.stride for k, v in input_shape]
feature_channels = [v.channels for k, v in input_shape]
self.ignore_value = ignore_value
self.common_stride = common_stride
self.loss_weight = loss_weight
self.scale_heads = []
for in_feature, stride, channels in zip(
self.in_features, feature_strides, feature_channels
):
head_ops = []
head_length = max(1, int(np.log2(stride) - np.log2(self.common_stride)))
for k in range(head_length):
norm_module = get_norm(norm, conv_dims)
conv = Conv2d(
channels if k == 0 else conv_dims,
conv_dims,
kernel_size=3,
stride=1,
padding=1,
bias=not norm,
norm=norm_module,
activation=F.relu,
)
weight_init.c2_msra_fill(conv)
head_ops.append(conv)
if stride != self.common_stride:
head_ops.append(
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
)
self.scale_heads.append(nn.Sequential(*head_ops))
self.add_module(in_feature, self.scale_heads[-1])
self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
weight_init.c2_msra_fill(self.predictor)
@classmethod
def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
return {
"input_shape": {
k: v for k, v in input_shape.items() if k in cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
},
"ignore_value": cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE,
"num_classes": cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES,
"conv_dims": cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM,
"common_stride": cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE,
"norm": cfg.MODEL.SEM_SEG_HEAD.NORM,
"loss_weight": cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT,
}
def forward(self, features, targets=None):
"""
Returns:
In training, returns (None, dict of losses)
In inference, returns (CxHxW logits, {})
"""
x = self.layers(features)
if self.training:
return None, self.losses(x, targets)
else:
x = F.interpolate(
x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
)
return x, {}
def layers(self, features):
for i, f in enumerate(self.in_features):
if i == 0:
x = self.scale_heads[i](features[f])
else:
x = x + self.scale_heads[i](features[f])
x = self.predictor(x)
return x
def losses(self, predictions, targets):
predictions = predictions.float() # https://github.com/pytorch/pytorch/issues/48163
predictions = F.interpolate(
predictions,
scale_factor=self.common_stride,
mode="bilinear",
align_corners=False,
)
loss = F.cross_entropy(
predictions, targets, reduction="mean", ignore_index=self.ignore_value
)
losses = {"loss_sem_seg": loss * self.loss_weight}
return losses