Spaces:
onrdmr
/
Running on Zero

File size: 8,807 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import logging
from typing import Dict, List
import torch

from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms_rotated, cat
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.memory import retry_if_cuda_oom

from ..box_regression import Box2BoxTransformRotated
from .build import PROPOSAL_GENERATOR_REGISTRY
from .proposal_utils import _is_tracing
from .rpn import RPN

logger = logging.getLogger(__name__)


def find_top_rrpn_proposals(
    proposals,
    pred_objectness_logits,
    image_sizes,
    nms_thresh,
    pre_nms_topk,
    post_nms_topk,
    min_box_size,
    training,
):
    """
    For each feature map, select the `pre_nms_topk` highest scoring proposals,
    apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk`
    highest scoring proposals among all the feature maps if `training` is True,
    otherwise, returns the highest `post_nms_topk` scoring proposals for each
    feature map.

    Args:
        proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 5).
            All proposal predictions on the feature maps.
        pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A).
        image_sizes (list[tuple]): sizes (h, w) for each image
        nms_thresh (float): IoU threshold to use for NMS
        pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS.
            When RRPN is run on multiple feature maps (as in FPN) this number is per
            feature map.
        post_nms_topk (int): number of top k scoring proposals to keep after applying NMS.
            When RRPN is run on multiple feature maps (as in FPN) this number is total,
            over all feature maps.
        min_box_size(float): minimum proposal box side length in pixels (absolute units wrt
            input images).
        training (bool): True if proposals are to be used in training, otherwise False.
            This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..."
            comment.

    Returns:
        proposals (list[Instances]): list of N Instances. The i-th Instances
            stores post_nms_topk object proposals for image i.
    """
    num_images = len(image_sizes)
    device = proposals[0].device

    # 1. Select top-k anchor for every level and every image
    topk_scores = []  # #lvl Tensor, each of shape N x topk
    topk_proposals = []
    level_ids = []  # #lvl Tensor, each of shape (topk,)
    batch_idx = torch.arange(num_images, device=device)
    for level_id, proposals_i, logits_i in zip(
        itertools.count(), proposals, pred_objectness_logits
    ):
        Hi_Wi_A = logits_i.shape[1]
        if isinstance(Hi_Wi_A, torch.Tensor):  # it's a tensor in tracing
            num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk)
        else:
            num_proposals_i = min(Hi_Wi_A, pre_nms_topk)

        topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)

        # each is N x topk
        topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx]  # N x topk x 5

        topk_proposals.append(topk_proposals_i)
        topk_scores.append(topk_scores_i)
        level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))

    # 2. Concat all levels together
    topk_scores = cat(topk_scores, dim=1)
    topk_proposals = cat(topk_proposals, dim=1)
    level_ids = cat(level_ids, dim=0)

    # 3. For each image, run a per-level NMS, and choose topk results.
    results = []
    for n, image_size in enumerate(image_sizes):
        boxes = RotatedBoxes(topk_proposals[n])
        scores_per_img = topk_scores[n]
        lvl = level_ids

        valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img)
        if not valid_mask.all():
            if training:
                raise FloatingPointError(
                    "Predicted boxes or scores contain Inf/NaN. Training has diverged."
                )
            boxes = boxes[valid_mask]
            scores_per_img = scores_per_img[valid_mask]
            lvl = lvl[valid_mask]
        boxes.clip(image_size)

        # filter empty boxes
        keep = boxes.nonempty(threshold=min_box_size)
        if _is_tracing() or keep.sum().item() != len(boxes):
            boxes, scores_per_img, lvl = (boxes[keep], scores_per_img[keep], lvl[keep])

        keep = batched_nms_rotated(boxes.tensor, scores_per_img, lvl, nms_thresh)
        # In Detectron1, there was different behavior during training vs. testing.
        # (https://github.com/facebookresearch/Detectron/issues/459)
        # During training, topk is over the proposals from *all* images in the training batch.
        # During testing, it is over the proposals for each image separately.
        # As a result, the training behavior becomes batch-dependent,
        # and the configuration "POST_NMS_TOPK_TRAIN" end up relying on the batch size.
        # This bug is addressed in Detectron2 to make the behavior independent of batch size.
        keep = keep[:post_nms_topk]

        res = Instances(image_size)
        res.proposal_boxes = boxes[keep]
        res.objectness_logits = scores_per_img[keep]
        results.append(res)
    return results


@PROPOSAL_GENERATOR_REGISTRY.register()
class RRPN(RPN):
    """
    Rotated Region Proposal Network described in :paper:`RRPN`.
    """

    @configurable
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if self.anchor_boundary_thresh >= 0:
            raise NotImplementedError(
                "anchor_boundary_thresh is a legacy option not implemented for RRPN."
            )

    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        ret = super().from_config(cfg, input_shape)
        ret["box2box_transform"] = Box2BoxTransformRotated(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS)
        return ret

    @torch.no_grad()
    def label_and_sample_anchors(self, anchors: List[RotatedBoxes], gt_instances: List[Instances]):
        """
        Args:
            anchors (list[RotatedBoxes]): anchors for each feature map.
            gt_instances: the ground-truth instances for each image.

        Returns:
            list[Tensor]:
                List of #img tensors. i-th element is a vector of labels whose length is
                the total number of anchors across feature maps. Label values are in {-1, 0, 1},
                with meanings: -1 = ignore; 0 = negative class; 1 = positive class.
            list[Tensor]:
                i-th element is a Nx5 tensor, where N is the total number of anchors across
                feature maps.  The values are the matched gt boxes for each anchor.
                Values are undefined for those anchors not labeled as 1.
        """
        anchors = RotatedBoxes.cat(anchors)

        gt_boxes = [x.gt_boxes for x in gt_instances]
        del gt_instances

        gt_labels = []
        matched_gt_boxes = []
        for gt_boxes_i in gt_boxes:
            """
            gt_boxes_i: ground-truth boxes for i-th image
            """
            match_quality_matrix = retry_if_cuda_oom(pairwise_iou_rotated)(gt_boxes_i, anchors)
            matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix)
            # Matching is memory-expensive and may result in CPU tensors. But the result is small
            gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device)

            # A vector of labels (-1, 0, 1) for each anchor
            gt_labels_i = self._subsample_labels(gt_labels_i)

            if len(gt_boxes_i) == 0:
                # These values won't be used anyway since the anchor is labeled as background
                matched_gt_boxes_i = torch.zeros_like(anchors.tensor)
            else:
                # TODO wasted indexing computation for ignored boxes
                matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor

            gt_labels.append(gt_labels_i)  # N,AHW
            matched_gt_boxes.append(matched_gt_boxes_i)
        return gt_labels, matched_gt_boxes

    @torch.no_grad()
    def predict_proposals(self, anchors, pred_objectness_logits, pred_anchor_deltas, image_sizes):
        pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas)
        return find_top_rrpn_proposals(
            pred_proposals,
            pred_objectness_logits,
            image_sizes,
            self.nms_thresh,
            self.pre_nms_topk[self.training],
            self.post_nms_topk[self.training],
            self.min_box_size,
            self.training,
        )