Spaces:
onrdmr
/
Running on Zero

File size: 23,814 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
from torch import nn

from detectron2.config import configurable
from detectron2.layers import Conv2d, ShapeSpec, cat
from detectron2.structures import Boxes, ImageList, Instances, pairwise_iou
from detectron2.utils.events import get_event_storage
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.utils.registry import Registry

from ..anchor_generator import build_anchor_generator
from ..box_regression import Box2BoxTransform, _dense_box_regression_loss
from ..matcher import Matcher
from ..sampling import subsample_labels
from .build import PROPOSAL_GENERATOR_REGISTRY
from .proposal_utils import find_top_rpn_proposals

RPN_HEAD_REGISTRY = Registry("RPN_HEAD")
RPN_HEAD_REGISTRY.__doc__ = """
Registry for RPN heads, which take feature maps and perform
objectness classification and bounding box regression for anchors.

The registered object will be called with `obj(cfg, input_shape)`.
The call should return a `nn.Module` object.
"""


"""
Shape shorthand in this module:

    N: number of images in the minibatch
    L: number of feature maps per image on which RPN is run
    A: number of cell anchors (must be the same for all feature maps)
    Hi, Wi: height and width of the i-th feature map
    B: size of the box parameterization

Naming convention:

    objectness: refers to the binary classification of an anchor as object vs. not object.

    deltas: refers to the 4-d (dx, dy, dw, dh) deltas that parameterize the box2box
    transform (see :class:`box_regression.Box2BoxTransform`), or 5d for rotated boxes.

    pred_objectness_logits: predicted objectness scores in [-inf, +inf]; use
        sigmoid(pred_objectness_logits) to estimate P(object).

    gt_labels: ground-truth binary classification labels for objectness

    pred_anchor_deltas: predicted box2box transform deltas

    gt_anchor_deltas: ground-truth box2box transform deltas
"""


def build_rpn_head(cfg, input_shape):
    """
    Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`.
    """
    name = cfg.MODEL.RPN.HEAD_NAME
    return RPN_HEAD_REGISTRY.get(name)(cfg, input_shape)


@RPN_HEAD_REGISTRY.register()
class StandardRPNHead(nn.Module):
    """
    Standard RPN classification and regression heads described in :paper:`Faster R-CNN`.
    Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts
    objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas
    specifying how to deform each anchor into an object proposal.
    """

    @configurable
    def __init__(
        self, *, in_channels: int, num_anchors: int, box_dim: int = 4, conv_dims: List[int] = (-1,)
    ):
        """
        NOTE: this interface is experimental.

        Args:
            in_channels (int): number of input feature channels. When using multiple
                input features, they must have the same number of channels.
            num_anchors (int): number of anchors to predict for *each spatial position*
                on the feature map. The total number of anchors for each
                feature map will be `num_anchors * H * W`.
            box_dim (int): dimension of a box, which is also the number of box regression
                predictions to make for each anchor. An axis aligned box has
                box_dim=4, while a rotated box has box_dim=5.
            conv_dims (list[int]): a list of integers representing the output channels
                of N conv layers. Set it to -1 to use the same number of output channels
                as input channels.
        """
        super().__init__()
        cur_channels = in_channels
        # Keeping the old variable names and structure for backwards compatiblity.
        # Otherwise the old checkpoints will fail to load.
        if len(conv_dims) == 1:
            out_channels = cur_channels if conv_dims[0] == -1 else conv_dims[0]
            # 3x3 conv for the hidden representation
            self.conv = self._get_rpn_conv(cur_channels, out_channels)
            cur_channels = out_channels
        else:
            self.conv = nn.Sequential()
            for k, conv_dim in enumerate(conv_dims):
                out_channels = cur_channels if conv_dim == -1 else conv_dim
                if out_channels <= 0:
                    raise ValueError(
                        f"Conv output channels should be greater than 0. Got {out_channels}"
                    )
                conv = self._get_rpn_conv(cur_channels, out_channels)
                self.conv.add_module(f"conv{k}", conv)
                cur_channels = out_channels
        # 1x1 conv for predicting objectness logits
        self.objectness_logits = nn.Conv2d(cur_channels, num_anchors, kernel_size=1, stride=1)
        # 1x1 conv for predicting box2box transform deltas
        self.anchor_deltas = nn.Conv2d(cur_channels, num_anchors * box_dim, kernel_size=1, stride=1)

        # Keeping the order of weights initialization same for backwards compatiblility.
        for layer in self.modules():
            if isinstance(layer, nn.Conv2d):
                nn.init.normal_(layer.weight, std=0.01)
                nn.init.constant_(layer.bias, 0)

    def _get_rpn_conv(self, in_channels, out_channels):
        return Conv2d(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            activation=nn.ReLU(),
        )

    @classmethod
    def from_config(cls, cfg, input_shape):
        # Standard RPN is shared across levels:
        in_channels = [s.channels for s in input_shape]
        assert len(set(in_channels)) == 1, "Each level must have the same channel!"
        in_channels = in_channels[0]

        # RPNHead should take the same input as anchor generator
        # NOTE: it assumes that creating an anchor generator does not have unwanted side effect.
        anchor_generator = build_anchor_generator(cfg, input_shape)
        num_anchors = anchor_generator.num_anchors
        box_dim = anchor_generator.box_dim
        assert (
            len(set(num_anchors)) == 1
        ), "Each level must have the same number of anchors per spatial position"
        return {
            "in_channels": in_channels,
            "num_anchors": num_anchors[0],
            "box_dim": box_dim,
            "conv_dims": cfg.MODEL.RPN.CONV_DIMS,
        }

    def forward(self, features: List[torch.Tensor]):
        """
        Args:
            features (list[Tensor]): list of feature maps

        Returns:
            list[Tensor]: A list of L elements.
                Element i is a tensor of shape (N, A, Hi, Wi) representing
                the predicted objectness logits for all anchors. A is the number of cell anchors.
            list[Tensor]: A list of L elements. Element i is a tensor of shape
                (N, A*box_dim, Hi, Wi) representing the predicted "deltas" used to transform anchors
                to proposals.
        """
        pred_objectness_logits = []
        pred_anchor_deltas = []
        for x in features:
            t = self.conv(x)
            pred_objectness_logits.append(self.objectness_logits(t))
            pred_anchor_deltas.append(self.anchor_deltas(t))
        return pred_objectness_logits, pred_anchor_deltas


@PROPOSAL_GENERATOR_REGISTRY.register()
class RPN(nn.Module):
    """
    Region Proposal Network, introduced by :paper:`Faster R-CNN`.
    """

    @configurable
    def __init__(
        self,
        *,
        in_features: List[str],
        head: nn.Module,
        anchor_generator: nn.Module,
        anchor_matcher: Matcher,
        box2box_transform: Box2BoxTransform,
        batch_size_per_image: int,
        positive_fraction: float,
        pre_nms_topk: Tuple[float, float],
        post_nms_topk: Tuple[float, float],
        nms_thresh: float = 0.7,
        min_box_size: float = 0.0,
        anchor_boundary_thresh: float = -1.0,
        loss_weight: Union[float, Dict[str, float]] = 1.0,
        box_reg_loss_type: str = "smooth_l1",
        smooth_l1_beta: float = 0.0,
    ):
        """
        NOTE: this interface is experimental.

        Args:
            in_features (list[str]): list of names of input features to use
            head (nn.Module): a module that predicts logits and regression deltas
                for each level from a list of per-level features
            anchor_generator (nn.Module): a module that creates anchors from a
                list of features. Usually an instance of :class:`AnchorGenerator`
            anchor_matcher (Matcher): label the anchors by matching them with ground truth.
            box2box_transform (Box2BoxTransform): defines the transform from anchors boxes to
                instance boxes
            batch_size_per_image (int): number of anchors per image to sample for training
            positive_fraction (float): fraction of foreground anchors to sample for training
            pre_nms_topk (tuple[float]): (train, test) that represents the
                number of top k proposals to select before NMS, in
                training and testing.
            post_nms_topk (tuple[float]): (train, test) that represents the
                number of top k proposals to select after NMS, in
                training and testing.
            nms_thresh (float): NMS threshold used to de-duplicate the predicted proposals
            min_box_size (float): remove proposal boxes with any side smaller than this threshold,
                in the unit of input image pixels
            anchor_boundary_thresh (float): legacy option
            loss_weight (float|dict): weights to use for losses. Can be single float for weighting
                all rpn losses together, or a dict of individual weightings. Valid dict keys are:
                    "loss_rpn_cls" - applied to classification loss
                    "loss_rpn_loc" - applied to box regression loss
            box_reg_loss_type (str): Loss type to use. Supported losses: "smooth_l1", "giou".
            smooth_l1_beta (float): beta parameter for the smooth L1 regression loss. Default to
                use L1 loss. Only used when `box_reg_loss_type` is "smooth_l1"
        """
        super().__init__()
        self.in_features = in_features
        self.rpn_head = head
        self.anchor_generator = anchor_generator
        self.anchor_matcher = anchor_matcher
        self.box2box_transform = box2box_transform
        self.batch_size_per_image = batch_size_per_image
        self.positive_fraction = positive_fraction
        # Map from self.training state to train/test settings
        self.pre_nms_topk = {True: pre_nms_topk[0], False: pre_nms_topk[1]}
        self.post_nms_topk = {True: post_nms_topk[0], False: post_nms_topk[1]}
        self.nms_thresh = nms_thresh
        self.min_box_size = float(min_box_size)
        self.anchor_boundary_thresh = anchor_boundary_thresh
        if isinstance(loss_weight, float):
            loss_weight = {"loss_rpn_cls": loss_weight, "loss_rpn_loc": loss_weight}
        self.loss_weight = loss_weight
        self.box_reg_loss_type = box_reg_loss_type
        self.smooth_l1_beta = smooth_l1_beta

    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        in_features = cfg.MODEL.RPN.IN_FEATURES
        ret = {
            "in_features": in_features,
            "min_box_size": cfg.MODEL.PROPOSAL_GENERATOR.MIN_SIZE,
            "nms_thresh": cfg.MODEL.RPN.NMS_THRESH,
            "batch_size_per_image": cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE,
            "positive_fraction": cfg.MODEL.RPN.POSITIVE_FRACTION,
            "loss_weight": {
                "loss_rpn_cls": cfg.MODEL.RPN.LOSS_WEIGHT,
                "loss_rpn_loc": cfg.MODEL.RPN.BBOX_REG_LOSS_WEIGHT * cfg.MODEL.RPN.LOSS_WEIGHT,
            },
            "anchor_boundary_thresh": cfg.MODEL.RPN.BOUNDARY_THRESH,
            "box2box_transform": Box2BoxTransform(weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS),
            "box_reg_loss_type": cfg.MODEL.RPN.BBOX_REG_LOSS_TYPE,
            "smooth_l1_beta": cfg.MODEL.RPN.SMOOTH_L1_BETA,
        }

        ret["pre_nms_topk"] = (cfg.MODEL.RPN.PRE_NMS_TOPK_TRAIN, cfg.MODEL.RPN.PRE_NMS_TOPK_TEST)
        ret["post_nms_topk"] = (cfg.MODEL.RPN.POST_NMS_TOPK_TRAIN, cfg.MODEL.RPN.POST_NMS_TOPK_TEST)

        ret["anchor_generator"] = build_anchor_generator(cfg, [input_shape[f] for f in in_features])
        ret["anchor_matcher"] = Matcher(
            cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True
        )
        ret["head"] = build_rpn_head(cfg, [input_shape[f] for f in in_features])
        return ret

    def _subsample_labels(self, label):
        """
        Randomly sample a subset of positive and negative examples, and overwrite
        the label vector to the ignore value (-1) for all elements that are not
        included in the sample.

        Args:
            labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned.
        """
        pos_idx, neg_idx = subsample_labels(
            label, self.batch_size_per_image, self.positive_fraction, 0
        )
        # Fill with the ignore label (-1), then set positive and negative labels
        label.fill_(-1)
        label.scatter_(0, pos_idx, 1)
        label.scatter_(0, neg_idx, 0)
        return label

    @torch.jit.unused
    @torch.no_grad()
    def label_and_sample_anchors(
        self, anchors: List[Boxes], gt_instances: List[Instances]
    ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
        """
        Args:
            anchors (list[Boxes]): anchors for each feature map.
            gt_instances: the ground-truth instances for each image.

        Returns:
            list[Tensor]:
                List of #img tensors. i-th element is a vector of labels whose length is
                the total number of anchors across all feature maps R = sum(Hi * Wi * A).
                Label values are in {-1, 0, 1}, with meanings: -1 = ignore; 0 = negative
                class; 1 = positive class.
            list[Tensor]:
                i-th element is a Rx4 tensor. The values are the matched gt boxes for each
                anchor. Values are undefined for those anchors not labeled as 1.
        """
        anchors = Boxes.cat(anchors)

        gt_boxes = [x.gt_boxes for x in gt_instances]
        image_sizes = [x.image_size for x in gt_instances]
        del gt_instances

        gt_labels = []
        matched_gt_boxes = []
        for image_size_i, gt_boxes_i in zip(image_sizes, gt_boxes):
            """
            image_size_i: (h, w) for the i-th image
            gt_boxes_i: ground-truth boxes for i-th image
            """

            match_quality_matrix = retry_if_cuda_oom(pairwise_iou)(gt_boxes_i, anchors)
            matched_idxs, gt_labels_i = retry_if_cuda_oom(self.anchor_matcher)(match_quality_matrix)
            # Matching is memory-expensive and may result in CPU tensors. But the result is small
            gt_labels_i = gt_labels_i.to(device=gt_boxes_i.device)
            del match_quality_matrix

            if self.anchor_boundary_thresh >= 0:
                # Discard anchors that go out of the boundaries of the image
                # NOTE: This is legacy functionality that is turned off by default in Detectron2
                anchors_inside_image = anchors.inside_box(image_size_i, self.anchor_boundary_thresh)
                gt_labels_i[~anchors_inside_image] = -1

            # A vector of labels (-1, 0, 1) for each anchor
            gt_labels_i = self._subsample_labels(gt_labels_i)

            if len(gt_boxes_i) == 0:
                # These values won't be used anyway since the anchor is labeled as background
                matched_gt_boxes_i = torch.zeros_like(anchors.tensor)
            else:
                # TODO wasted indexing computation for ignored boxes
                matched_gt_boxes_i = gt_boxes_i[matched_idxs].tensor

            gt_labels.append(gt_labels_i)  # N,AHW
            matched_gt_boxes.append(matched_gt_boxes_i)
        return gt_labels, matched_gt_boxes

    @torch.jit.unused
    def losses(
        self,
        anchors: List[Boxes],
        pred_objectness_logits: List[torch.Tensor],
        gt_labels: List[torch.Tensor],
        pred_anchor_deltas: List[torch.Tensor],
        gt_boxes: List[torch.Tensor],
    ) -> Dict[str, torch.Tensor]:
        """
        Return the losses from a set of RPN predictions and their associated ground-truth.

        Args:
            anchors (list[Boxes or RotatedBoxes]): anchors for each feature map, each
                has shape (Hi*Wi*A, B), where B is box dimension (4 or 5).
            pred_objectness_logits (list[Tensor]): A list of L elements.
                Element i is a tensor of shape (N, Hi*Wi*A) representing
                the predicted objectness logits for all anchors.
            gt_labels (list[Tensor]): Output of :meth:`label_and_sample_anchors`.
            pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape
                (N, Hi*Wi*A, 4 or 5) representing the predicted "deltas" used to transform anchors
                to proposals.
            gt_boxes (list[Tensor]): Output of :meth:`label_and_sample_anchors`.

        Returns:
            dict[loss name -> loss value]: A dict mapping from loss name to loss value.
                Loss names are: `loss_rpn_cls` for objectness classification and
                `loss_rpn_loc` for proposal localization.
        """
        num_images = len(gt_labels)
        gt_labels = torch.stack(gt_labels)  # (N, sum(Hi*Wi*Ai))

        # Log the number of positive/negative anchors per-image that's used in training
        pos_mask = gt_labels == 1
        num_pos_anchors = pos_mask.sum().item()
        num_neg_anchors = (gt_labels == 0).sum().item()
        storage = get_event_storage()
        storage.put_scalar("rpn/num_pos_anchors", num_pos_anchors / num_images)
        storage.put_scalar("rpn/num_neg_anchors", num_neg_anchors / num_images)

        localization_loss = _dense_box_regression_loss(
            anchors,
            self.box2box_transform,
            pred_anchor_deltas,
            gt_boxes,
            pos_mask,
            box_reg_loss_type=self.box_reg_loss_type,
            smooth_l1_beta=self.smooth_l1_beta,
        )

        valid_mask = gt_labels >= 0
        objectness_loss = F.binary_cross_entropy_with_logits(
            cat(pred_objectness_logits, dim=1)[valid_mask],
            gt_labels[valid_mask].to(torch.float32),
            reduction="sum",
        )
        normalizer = self.batch_size_per_image * num_images
        losses = {
            "loss_rpn_cls": objectness_loss / normalizer,
            # The original Faster R-CNN paper uses a slightly different normalizer
            # for loc loss. But it doesn't matter in practice
            "loss_rpn_loc": localization_loss / normalizer,
        }
        losses = {k: v * self.loss_weight.get(k, 1.0) for k, v in losses.items()}
        return losses

    def forward(
        self,
        images: ImageList,
        features: Dict[str, torch.Tensor],
        gt_instances: Optional[List[Instances]] = None,
    ):
        """
        Args:
            images (ImageList): input images of length `N`
            features (dict[str, Tensor]): input data as a mapping from feature
                map name to tensor. Axis 0 represents the number of images `N` in
                the input data; axes 1-3 are channels, height, and width, which may
                vary between feature maps (e.g., if a feature pyramid is used).
            gt_instances (list[Instances], optional): a length `N` list of `Instances`s.
                Each `Instances` stores ground-truth instances for the corresponding image.

        Returns:
            proposals: list[Instances]: contains fields "proposal_boxes", "objectness_logits"
            loss: dict[Tensor] or None
        """
        features = [features[f] for f in self.in_features]
        anchors = self.anchor_generator(features)

        pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
        # Transpose the Hi*Wi*A dimension to the middle:
        pred_objectness_logits = [
            # (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
            score.permute(0, 2, 3, 1).flatten(1)
            for score in pred_objectness_logits
        ]
        pred_anchor_deltas = [
            # (N, A*B, Hi, Wi) -> (N, A, B, Hi, Wi) -> (N, Hi, Wi, A, B) -> (N, Hi*Wi*A, B)
            x.view(x.shape[0], -1, self.anchor_generator.box_dim, x.shape[-2], x.shape[-1])
            .permute(0, 3, 4, 1, 2)
            .flatten(1, -2)
            for x in pred_anchor_deltas
        ]

        if self.training:
            assert gt_instances is not None, "RPN requires gt_instances in training!"
            gt_labels, gt_boxes = self.label_and_sample_anchors(anchors, gt_instances)
            losses = self.losses(
                anchors, pred_objectness_logits, gt_labels, pred_anchor_deltas, gt_boxes
            )
        else:
            losses = {}
        proposals = self.predict_proposals(
            anchors, pred_objectness_logits, pred_anchor_deltas, images.image_sizes
        )
        return proposals, losses

    def predict_proposals(
        self,
        anchors: List[Boxes],
        pred_objectness_logits: List[torch.Tensor],
        pred_anchor_deltas: List[torch.Tensor],
        image_sizes: List[Tuple[int, int]],
    ):
        """
        Decode all the predicted box regression deltas to proposals. Find the top proposals
        by applying NMS and removing boxes that are too small.

        Returns:
            proposals (list[Instances]): list of N Instances. The i-th Instances
                stores post_nms_topk object proposals for image i, sorted by their
                objectness score in descending order.
        """
        # The proposals are treated as fixed for joint training with roi heads.
        # This approach ignores the derivative w.r.t. the proposal boxesโ€™ coordinates that
        # are also network responses.
        with torch.no_grad():
            pred_proposals = self._decode_proposals(anchors, pred_anchor_deltas)
            return find_top_rpn_proposals(
                pred_proposals,
                pred_objectness_logits,
                image_sizes,
                self.nms_thresh,
                self.pre_nms_topk[self.training],
                self.post_nms_topk[self.training],
                self.min_box_size,
                self.training,
            )

    def _decode_proposals(self, anchors: List[Boxes], pred_anchor_deltas: List[torch.Tensor]):
        """
        Transform anchors into proposals by applying the predicted anchor deltas.

        Returns:
            proposals (list[Tensor]): A list of L tensors. Tensor i has shape
                (N, Hi*Wi*A, B)
        """
        N = pred_anchor_deltas[0].shape[0]
        proposals = []
        # For each feature map
        for anchors_i, pred_anchor_deltas_i in zip(anchors, pred_anchor_deltas):
            B = anchors_i.tensor.size(1)
            pred_anchor_deltas_i = pred_anchor_deltas_i.reshape(-1, B)
            # Expand anchors to shape (N*Hi*Wi*A, B)
            anchors_i = anchors_i.tensor.unsqueeze(0).expand(N, -1, -1).reshape(-1, B)
            proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
            # Append feature map proposals with shape (N, Hi*Wi*A, B)
            proposals.append(proposals_i.view(N, -1, B))
        return proposals