Spaces:
onrdmr
/
Running on Zero

File size: 8,128 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
from typing import List, Tuple, Union
import torch

from detectron2.layers import batched_nms, cat, move_device_like
from detectron2.structures import Boxes, Instances

logger = logging.getLogger(__name__)


def _is_tracing():
    # (fixed in TORCH_VERSION >= 1.9)
    if torch.jit.is_scripting():
        # https://github.com/pytorch/pytorch/issues/47379
        return False
    else:
        return torch.jit.is_tracing()


def find_top_rpn_proposals(
    proposals: List[torch.Tensor],
    pred_objectness_logits: List[torch.Tensor],
    image_sizes: List[Tuple[int, int]],
    nms_thresh: float,
    pre_nms_topk: int,
    post_nms_topk: int,
    min_box_size: float,
    training: bool,
):
    """
    For each feature map, select the `pre_nms_topk` highest scoring proposals,
    apply NMS, clip proposals, and remove small boxes. Return the `post_nms_topk`
    highest scoring proposals among all the feature maps for each image.

    Args:
        proposals (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A, 4).
            All proposal predictions on the feature maps.
        pred_objectness_logits (list[Tensor]): A list of L tensors. Tensor i has shape (N, Hi*Wi*A).
        image_sizes (list[tuple]): sizes (h, w) for each image
        nms_thresh (float): IoU threshold to use for NMS
        pre_nms_topk (int): number of top k scoring proposals to keep before applying NMS.
            When RPN is run on multiple feature maps (as in FPN) this number is per
            feature map.
        post_nms_topk (int): number of top k scoring proposals to keep after applying NMS.
            When RPN is run on multiple feature maps (as in FPN) this number is total,
            over all feature maps.
        min_box_size (float): minimum proposal box side length in pixels (absolute units
            wrt input images).
        training (bool): True if proposals are to be used in training, otherwise False.
            This arg exists only to support a legacy bug; look for the "NB: Legacy bug ..."
            comment.

    Returns:
        list[Instances]: list of N Instances. The i-th Instances
            stores post_nms_topk object proposals for image i, sorted by their
            objectness score in descending order.
    """
    num_images = len(image_sizes)
    device = (
        proposals[0].device
        if torch.jit.is_scripting()
        else ("cpu" if torch.jit.is_tracing() else proposals[0].device)
    )

    # 1. Select top-k anchor for every level and every image
    topk_scores = []  # #lvl Tensor, each of shape N x topk
    topk_proposals = []
    level_ids = []  # #lvl Tensor, each of shape (topk,)
    batch_idx = move_device_like(torch.arange(num_images, device=device), proposals[0])
    for level_id, (proposals_i, logits_i) in enumerate(zip(proposals, pred_objectness_logits)):
        Hi_Wi_A = logits_i.shape[1]
        if isinstance(Hi_Wi_A, torch.Tensor):  # it's a tensor in tracing
            num_proposals_i = torch.clamp(Hi_Wi_A, max=pre_nms_topk)
        else:
            num_proposals_i = min(Hi_Wi_A, pre_nms_topk)

        topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)

        # each is N x topk
        topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx]  # N x topk x 4

        topk_proposals.append(topk_proposals_i)
        topk_scores.append(topk_scores_i)
        level_ids.append(
            move_device_like(
                torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device),
                proposals[0],
            )
        )

    # 2. Concat all levels together
    topk_scores = cat(topk_scores, dim=1)
    topk_proposals = cat(topk_proposals, dim=1)
    level_ids = cat(level_ids, dim=0)

    # 3. For each image, run a per-level NMS, and choose topk results.
    results: List[Instances] = []
    for n, image_size in enumerate(image_sizes):
        boxes = Boxes(topk_proposals[n])
        scores_per_img = topk_scores[n]
        lvl = level_ids

        valid_mask = torch.isfinite(boxes.tensor).all(dim=1) & torch.isfinite(scores_per_img)
        if not valid_mask.all():
            if training:
                raise FloatingPointError(
                    "Predicted boxes or scores contain Inf/NaN. Training has diverged."
                )
            boxes = boxes[valid_mask]
            scores_per_img = scores_per_img[valid_mask]
            lvl = lvl[valid_mask]
        boxes.clip(image_size)

        # filter empty boxes
        keep = boxes.nonempty(threshold=min_box_size)
        if _is_tracing() or keep.sum().item() != len(boxes):
            boxes, scores_per_img, lvl = boxes[keep], scores_per_img[keep], lvl[keep]

        keep = batched_nms(boxes.tensor, scores_per_img, lvl, nms_thresh)
        # In Detectron1, there was different behavior during training vs. testing.
        # (https://github.com/facebookresearch/Detectron/issues/459)
        # During training, topk is over the proposals from *all* images in the training batch.
        # During testing, it is over the proposals for each image separately.
        # As a result, the training behavior becomes batch-dependent,
        # and the configuration "POST_NMS_TOPK_TRAIN" end up relying on the batch size.
        # This bug is addressed in Detectron2 to make the behavior independent of batch size.
        keep = keep[:post_nms_topk]  # keep is already sorted

        res = Instances(image_size)
        res.proposal_boxes = boxes[keep]
        res.objectness_logits = scores_per_img[keep]
        results.append(res)
    return results


def add_ground_truth_to_proposals(
    gt: Union[List[Instances], List[Boxes]], proposals: List[Instances]
) -> List[Instances]:
    """
    Call `add_ground_truth_to_proposals_single_image` for all images.

    Args:
        gt(Union[List[Instances], List[Boxes]): list of N elements. Element i is a Instances
            representing the ground-truth for image i.
        proposals (list[Instances]): list of N elements. Element i is a Instances
            representing the proposals for image i.

    Returns:
        list[Instances]: list of N Instances. Each is the proposals for the image,
            with field "proposal_boxes" and "objectness_logits".
    """
    assert gt is not None

    if len(proposals) != len(gt):
        raise ValueError("proposals and gt should have the same length as the number of images!")
    if len(proposals) == 0:
        return proposals

    return [
        add_ground_truth_to_proposals_single_image(gt_i, proposals_i)
        for gt_i, proposals_i in zip(gt, proposals)
    ]


def add_ground_truth_to_proposals_single_image(
    gt: Union[Instances, Boxes], proposals: Instances
) -> Instances:
    """
    Augment `proposals` with `gt`.

    Args:
        Same as `add_ground_truth_to_proposals`, but with gt and proposals
        per image.

    Returns:
        Same as `add_ground_truth_to_proposals`, but for only one image.
    """
    if isinstance(gt, Boxes):
        # convert Boxes to Instances
        gt = Instances(proposals.image_size, gt_boxes=gt)

    gt_boxes = gt.gt_boxes
    device = proposals.objectness_logits.device
    # Assign all ground-truth boxes an objectness logit corresponding to
    # P(object) = sigmoid(logit) =~ 1.
    gt_logit_value = math.log((1.0 - 1e-10) / (1 - (1.0 - 1e-10)))
    gt_logits = gt_logit_value * torch.ones(len(gt_boxes), device=device)

    # Concatenating gt_boxes with proposals requires them to have the same fields
    gt_proposal = Instances(proposals.image_size, **gt.get_fields())
    gt_proposal.proposal_boxes = gt_boxes
    gt_proposal.objectness_logits = gt_logits

    for key in proposals.get_fields().keys():
        assert gt_proposal.has(
            key
        ), "The attribute '{}' in `proposals` does not exist in `gt`".format(key)

    # NOTE: Instances.cat only use fields from the first item. Extra fields in latter items
    # will be thrown away.
    new_proposals = Instances.cat([proposals, gt_proposal])

    return new_proposals