Spaces:
onrdmr
/
Running on Zero

File size: 12,185 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import List
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.config import configurable
from detectron2.layers import Conv2d, ConvTranspose2d, ShapeSpec, cat, get_norm
from detectron2.layers.wrappers import move_device_like
from detectron2.structures import Instances
from detectron2.utils.events import get_event_storage
from detectron2.utils.registry import Registry

__all__ = [
    "BaseMaskRCNNHead",
    "MaskRCNNConvUpsampleHead",
    "build_mask_head",
    "ROI_MASK_HEAD_REGISTRY",
]


ROI_MASK_HEAD_REGISTRY = Registry("ROI_MASK_HEAD")
ROI_MASK_HEAD_REGISTRY.__doc__ = """
Registry for mask heads, which predicts instance masks given
per-region features.

The registered object will be called with `obj(cfg, input_shape)`.
"""


@torch.jit.unused
def mask_rcnn_loss(pred_mask_logits: torch.Tensor, instances: List[Instances], vis_period: int = 0):
    """
    Compute the mask prediction loss defined in the Mask R-CNN paper.

    Args:
        pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask)
            for class-specific or class-agnostic, where B is the total number of predicted masks
            in all images, C is the number of foreground classes, and Hmask, Wmask are the height
            and width of the mask predictions. The values are logits.
        instances (list[Instances]): A list of N Instances, where N is the number of images
            in the batch. These instances are in 1:1
            correspondence with the pred_mask_logits. The ground-truth labels (class, box, mask,
            ...) associated with each instance are stored in fields.
        vis_period (int): the period (in steps) to dump visualization.

    Returns:
        mask_loss (Tensor): A scalar tensor containing the loss.
    """
    cls_agnostic_mask = pred_mask_logits.size(1) == 1
    total_num_masks = pred_mask_logits.size(0)
    mask_side_len = pred_mask_logits.size(2)
    assert pred_mask_logits.size(2) == pred_mask_logits.size(3), "Mask prediction must be square!"

    gt_classes = []
    gt_masks = []
    for instances_per_image in instances:
        if len(instances_per_image) == 0:
            continue
        if not cls_agnostic_mask:
            gt_classes_per_image = instances_per_image.gt_classes.to(dtype=torch.int64)
            gt_classes.append(gt_classes_per_image)

        gt_masks_per_image = instances_per_image.gt_masks.crop_and_resize(
            instances_per_image.proposal_boxes.tensor, mask_side_len
        ).to(device=pred_mask_logits.device)
        # A tensor of shape (N, M, M), N=#instances in the image; M=mask_side_len
        gt_masks.append(gt_masks_per_image)

    if len(gt_masks) == 0:
        return pred_mask_logits.sum() * 0

    gt_masks = cat(gt_masks, dim=0)

    if cls_agnostic_mask:
        pred_mask_logits = pred_mask_logits[:, 0]
    else:
        indices = torch.arange(total_num_masks)
        gt_classes = cat(gt_classes, dim=0)
        pred_mask_logits = pred_mask_logits[indices, gt_classes]

    if gt_masks.dtype == torch.bool:
        gt_masks_bool = gt_masks
    else:
        # Here we allow gt_masks to be float as well (depend on the implementation of rasterize())
        gt_masks_bool = gt_masks > 0.5
    gt_masks = gt_masks.to(dtype=torch.float32)

    # Log the training accuracy (using gt classes and sigmoid(0.0) == 0.5 threshold)
    mask_incorrect = (pred_mask_logits > 0.0) != gt_masks_bool
    mask_accuracy = 1 - (mask_incorrect.sum().item() / max(mask_incorrect.numel(), 1.0))
    num_positive = gt_masks_bool.sum().item()
    false_positive = (mask_incorrect & ~gt_masks_bool).sum().item() / max(
        gt_masks_bool.numel() - num_positive, 1.0
    )
    false_negative = (mask_incorrect & gt_masks_bool).sum().item() / max(num_positive, 1.0)

    storage = get_event_storage()
    storage.put_scalar("mask_rcnn/accuracy", mask_accuracy)
    storage.put_scalar("mask_rcnn/false_positive", false_positive)
    storage.put_scalar("mask_rcnn/false_negative", false_negative)
    if vis_period > 0 and storage.iter % vis_period == 0:
        pred_masks = pred_mask_logits.sigmoid()
        vis_masks = torch.cat([pred_masks, gt_masks], axis=2)
        name = "Left: mask prediction;   Right: mask GT"
        for idx, vis_mask in enumerate(vis_masks):
            vis_mask = torch.stack([vis_mask] * 3, axis=0)
            storage.put_image(name + f" ({idx})", vis_mask)

    mask_loss = F.binary_cross_entropy_with_logits(pred_mask_logits, gt_masks, reduction="mean")
    return mask_loss


def mask_rcnn_inference(pred_mask_logits: torch.Tensor, pred_instances: List[Instances]):
    """
    Convert pred_mask_logits to estimated foreground probability masks while also
    extracting only the masks for the predicted classes in pred_instances. For each
    predicted box, the mask of the same class is attached to the instance by adding a
    new "pred_masks" field to pred_instances.

    Args:
        pred_mask_logits (Tensor): A tensor of shape (B, C, Hmask, Wmask) or (B, 1, Hmask, Wmask)
            for class-specific or class-agnostic, where B is the total number of predicted masks
            in all images, C is the number of foreground classes, and Hmask, Wmask are the height
            and width of the mask predictions. The values are logits.
        pred_instances (list[Instances]): A list of N Instances, where N is the number of images
            in the batch. Each Instances must have field "pred_classes".

    Returns:
        None. pred_instances will contain an extra "pred_masks" field storing a mask of size (Hmask,
            Wmask) for predicted class. Note that the masks are returned as a soft (non-quantized)
            masks the resolution predicted by the network; post-processing steps, such as resizing
            the predicted masks to the original image resolution and/or binarizing them, is left
            to the caller.
    """
    cls_agnostic_mask = pred_mask_logits.size(1) == 1

    if cls_agnostic_mask:
        mask_probs_pred = pred_mask_logits.sigmoid()
    else:
        # Select masks corresponding to the predicted classes
        num_masks = pred_mask_logits.shape[0]
        class_pred = cat([i.pred_classes for i in pred_instances])
        device = (
            class_pred.device
            if torch.jit.is_scripting()
            else ("cpu" if torch.jit.is_tracing() else class_pred.device)
        )
        indices = move_device_like(torch.arange(num_masks, device=device), class_pred)
        mask_probs_pred = pred_mask_logits[indices, class_pred][:, None].sigmoid()
    # mask_probs_pred.shape: (B, 1, Hmask, Wmask)

    num_boxes_per_image = [len(i) for i in pred_instances]
    mask_probs_pred = mask_probs_pred.split(num_boxes_per_image, dim=0)

    for prob, instances in zip(mask_probs_pred, pred_instances):
        instances.pred_masks = prob  # (1, Hmask, Wmask)


class BaseMaskRCNNHead(nn.Module):
    """
    Implement the basic Mask R-CNN losses and inference logic described in :paper:`Mask R-CNN`
    """

    @configurable
    def __init__(self, *, loss_weight: float = 1.0, vis_period: int = 0):
        """
        NOTE: this interface is experimental.

        Args:
            loss_weight (float): multiplier of the loss
            vis_period (int): visualization period
        """
        super().__init__()
        self.vis_period = vis_period
        self.loss_weight = loss_weight

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {"vis_period": cfg.VIS_PERIOD}

    def forward(self, x, instances: List[Instances]):
        """
        Args:
            x: input region feature(s) provided by :class:`ROIHeads`.
            instances (list[Instances]): contains the boxes & labels corresponding
                to the input features.
                Exact format is up to its caller to decide.
                Typically, this is the foreground instances in training, with
                "proposal_boxes" field and other gt annotations.
                In inference, it contains boxes that are already predicted.

        Returns:
            A dict of losses in training. The predicted "instances" in inference.
        """
        x = self.layers(x)
        if self.training:
            return {"loss_mask": mask_rcnn_loss(x, instances, self.vis_period) * self.loss_weight}
        else:
            mask_rcnn_inference(x, instances)
            return instances

    def layers(self, x):
        """
        Neural network layers that makes predictions from input features.
        """
        raise NotImplementedError


# To get torchscript support, we make the head a subclass of `nn.Sequential`.
# Therefore, to add new layers in this head class, please make sure they are
# added in the order they will be used in forward().
@ROI_MASK_HEAD_REGISTRY.register()
class MaskRCNNConvUpsampleHead(BaseMaskRCNNHead, nn.Sequential):
    """
    A mask head with several conv layers, plus an upsample layer (with `ConvTranspose2d`).
    Predictions are made with a final 1x1 conv layer.
    """

    @configurable
    def __init__(self, input_shape: ShapeSpec, *, num_classes, conv_dims, conv_norm="", **kwargs):
        """
        NOTE: this interface is experimental.

        Args:
            input_shape (ShapeSpec): shape of the input feature
            num_classes (int): the number of foreground classes (i.e. background is not
                included). 1 if using class agnostic prediction.
            conv_dims (list[int]): a list of N>0 integers representing the output dimensions
                of N-1 conv layers and the last upsample layer.
            conv_norm (str or callable): normalization for the conv layers.
                See :func:`detectron2.layers.get_norm` for supported types.
        """
        super().__init__(**kwargs)
        assert len(conv_dims) >= 1, "conv_dims have to be non-empty!"

        self.conv_norm_relus = []

        cur_channels = input_shape.channels
        for k, conv_dim in enumerate(conv_dims[:-1]):
            conv = Conv2d(
                cur_channels,
                conv_dim,
                kernel_size=3,
                stride=1,
                padding=1,
                bias=not conv_norm,
                norm=get_norm(conv_norm, conv_dim),
                activation=nn.ReLU(),
            )
            self.add_module("mask_fcn{}".format(k + 1), conv)
            self.conv_norm_relus.append(conv)
            cur_channels = conv_dim

        self.deconv = ConvTranspose2d(
            cur_channels, conv_dims[-1], kernel_size=2, stride=2, padding=0
        )
        self.add_module("deconv_relu", nn.ReLU())
        cur_channels = conv_dims[-1]

        self.predictor = Conv2d(cur_channels, num_classes, kernel_size=1, stride=1, padding=0)

        for layer in self.conv_norm_relus + [self.deconv]:
            weight_init.c2_msra_fill(layer)
        # use normal distribution initialization for mask prediction layer
        nn.init.normal_(self.predictor.weight, std=0.001)
        if self.predictor.bias is not None:
            nn.init.constant_(self.predictor.bias, 0)

    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = super().from_config(cfg, input_shape)
        conv_dim = cfg.MODEL.ROI_MASK_HEAD.CONV_DIM
        num_conv = cfg.MODEL.ROI_MASK_HEAD.NUM_CONV
        ret.update(
            conv_dims=[conv_dim] * (num_conv + 1),  # +1 for ConvTranspose
            conv_norm=cfg.MODEL.ROI_MASK_HEAD.NORM,
            input_shape=input_shape,
        )
        if cfg.MODEL.ROI_MASK_HEAD.CLS_AGNOSTIC_MASK:
            ret["num_classes"] = 1
        else:
            ret["num_classes"] = cfg.MODEL.ROI_HEADS.NUM_CLASSES
        return ret

    def layers(self, x):
        for layer in self:
            x = layer(x)
        return x


def build_mask_head(cfg, input_shape):
    """
    Build a mask head defined by `cfg.MODEL.ROI_MASK_HEAD.NAME`.
    """
    name = cfg.MODEL.ROI_MASK_HEAD.NAME
    return ROI_MASK_HEAD_REGISTRY.get(name)(cfg, input_shape)