import streamlit as st from huggingface_hub import HfApi import os import urllib.request import subprocess import tarfile HF_TOKEN = st.secrets.get("HF_TOKEN") or os.environ.get("HF_TOKEN") HF_USERNAME = ( st.secrets.get("HF_USERNAME") or os.environ.get("HF_USERNAME") or os.environ.get("SPACE_AUTHOR_NAME") ) TRANSFORMERS_REPOSITORY_REVISION = "v3" TRANSFORMERS_REPOSITORY_URL = f"https://github.com/xenova/transformers.js/archive/refs/heads/{TRANSFORMERS_REPOSITORY_REVISION}.tar.gz" TRANSFORMERS_REPOSITORY_PATH = "./transformers.js" ARCHIVE_PATH = f"./transformers_{TRANSFORMERS_REPOSITORY_REVISION}.tar.gz" HF_BASE_URL = "https://huggingface.co" if not os.path.exists(TRANSFORMERS_REPOSITORY_PATH): # Download the .tar.gz file print(f"Downloading the repository from {TRANSFORMERS_REPOSITORY_URL}...") urllib.request.urlretrieve(TRANSFORMERS_REPOSITORY_URL, ARCHIVE_PATH) # Extract the .tar.gz file print(f"Extracting the archive {ARCHIVE_PATH}...") with tarfile.open(ARCHIVE_PATH, "r:gz") as tar: tar.extractall() # Rename the extracted folder to match the expected path # GitHub strips the leading 'v', so we handle that here extracted_folder = f"./transformers.js-{TRANSFORMERS_REPOSITORY_REVISION.lstrip('v')}" os.rename(extracted_folder, TRANSFORMERS_REPOSITORY_PATH) # Remove the downloaded .tar.gz archive os.remove(ARCHIVE_PATH) print("Repository downloaded and extracted successfully.") st.write("## Convert a HuggingFace model to ONNX") input_model_id = st.text_input( "Enter the HuggingFace model ID to convert. Example: `EleutherAI/pythia-14m`" ) if input_model_id: model_name = ( input_model_id.replace(f"{HF_BASE_URL}/", "") .replace("/", "-") .replace(f"{HF_USERNAME}-", "") .strip() ) output_model_id = f"{HF_USERNAME}/{model_name}-ONNX" output_model_url = f"{HF_BASE_URL}/{output_model_id}" api = HfApi(token=HF_TOKEN) repo_exists = api.repo_exists(output_model_id) if repo_exists: st.write("This model has already been converted! 🎉") st.link_button(f"Go to {output_model_id}", output_model_url, type="primary") else: st.write(f"This model will be converted and uploaded to the following URL:") st.code(output_model_url, language="plaintext") start_conversion = st.button(label="Proceed", type="primary") if start_conversion: with st.spinner("Converting model..."): output = subprocess.run( [ "python", "-m", "scripts.convert", "--quantize", "--model_id", input_model_id, ], cwd=TRANSFORMERS_REPOSITORY_PATH, capture_output=True, text=True, ) # Log the script output print("### Script Output ###") print(output.stdout) # Log any errors if output.stderr: print("### Script Errors ###") print(output.stderr) model_folder_path = ( f"{TRANSFORMERS_REPOSITORY_PATH}/models/{input_model_id}" ) os.rename( f"{model_folder_path}/onnx/model.onnx", f"{model_folder_path}/onnx/decoder_model_merged.onnx", ) os.rename( f"{model_folder_path}/onnx/model_quantized.onnx", f"{model_folder_path}/onnx/decoder_model_merged_quantized.onnx", ) st.success("Conversion successful!") st.code(output.stderr) with st.spinner("Uploading model..."): repository = api.create_repo( f"{output_model_id}", exist_ok=True, private=False ) upload_error_message = None try: api.upload_folder( folder_path=model_folder_path, repo_id=repository.repo_id ) except Exception as e: upload_error_message = str(e) os.system(f"rm -rf {model_folder_path}") if upload_error_message: st.error(f"Upload failed: {upload_error_message}") else: st.success(f"Upload successful!") st.write("You can now go and view the model on HuggingFace!") st.link_button( f"Go to {output_model_id}", output_model_url, type="primary" )