Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ import numpy as np
|
|
11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
12 |
import gradio as gr
|
13 |
import spaces
|
|
|
14 |
|
15 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
16 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
@@ -52,8 +53,6 @@ def download_models():
|
|
52 |
|
53 |
download_models()
|
54 |
|
55 |
-
import time
|
56 |
-
|
57 |
def timer_func(func):
|
58 |
def wrapper(*args, **kwargs):
|
59 |
start_time = time.time()
|
@@ -71,35 +70,20 @@ class LazyLoadPipeline:
|
|
71 |
def load(self):
|
72 |
if self.pipe is None:
|
73 |
print("Starting to load the pipeline...")
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
print(f"Moving pipeline to device: {device}")
|
81 |
-
self.pipe.to(device)
|
82 |
-
if USE_TORCH_COMPILE:
|
83 |
-
print("Compiling the model...")
|
84 |
-
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
85 |
-
except Exception as e:
|
86 |
-
print(f"Error loading pipeline: {str(e)}")
|
87 |
-
raise
|
88 |
|
89 |
@timer_func
|
90 |
def setup_pipeline(self):
|
91 |
print("Setting up the pipeline...")
|
92 |
-
start_time = time.time()
|
93 |
controlnet = ControlNetModel.from_single_file(
|
94 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
95 |
)
|
96 |
-
print(f"ControlNet loaded in {time.time() - start_time:.2f} seconds")
|
97 |
-
|
98 |
-
start_time = time.time()
|
99 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
100 |
-
print(f"Safety checker loaded in {time.time() - start_time:.2f} seconds")
|
101 |
-
|
102 |
-
start_time = time.time()
|
103 |
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
104 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
105 |
model_path,
|
@@ -108,37 +92,21 @@ class LazyLoadPipeline:
|
|
108 |
use_safetensors=True,
|
109 |
safety_checker=safety_checker
|
110 |
)
|
111 |
-
print(f"Main pipeline loaded in {time.time() - start_time:.2f} seconds")
|
112 |
-
|
113 |
-
start_time = time.time()
|
114 |
vae = AutoencoderKL.from_single_file(
|
115 |
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
116 |
torch_dtype=torch.float16
|
117 |
)
|
118 |
pipe.vae = vae
|
119 |
-
print(f"VAE loaded in {time.time() - start_time:.2f} seconds")
|
120 |
-
|
121 |
-
print("Loading textual inversions and LoRA weights...")
|
122 |
-
start_time = time.time()
|
123 |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
124 |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
125 |
-
print(f"Textual inversions loaded in {time.time() - start_time:.2f} seconds")
|
126 |
-
|
127 |
-
start_time = time.time()
|
128 |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
129 |
pipe.fuse_lora(lora_scale=0.5)
|
130 |
pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
131 |
-
print(f"LoRA weights loaded in {time.time() - start_time:.2f} seconds")
|
132 |
-
|
133 |
-
start_time = time.time()
|
134 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
135 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
136 |
-
print(f"Scheduler and FreeU set up in {time.time() - start_time:.2f} seconds")
|
137 |
-
|
138 |
return pipe
|
139 |
|
140 |
def __call__(self, *args, **kwargs):
|
141 |
-
self.load()
|
142 |
return self.pipe(*args, **kwargs)
|
143 |
|
144 |
class LazyRealESRGAN:
|
@@ -173,7 +141,7 @@ def resize_and_upscale(input_image, resolution):
|
|
173 |
else:
|
174 |
img = lazy_realesrgan_x4.predict(img)
|
175 |
return img
|
176 |
-
|
177 |
@timer_func
|
178 |
def create_hdr_effect(original_image, hdr):
|
179 |
if hdr == 0:
|
@@ -189,44 +157,41 @@ def create_hdr_effect(original_image, hdr):
|
|
189 |
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
190 |
|
191 |
lazy_pipe = LazyLoadPipeline()
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
@spaces.GPU
|
194 |
@timer_func
|
195 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
196 |
print("Starting image processing...")
|
197 |
torch.cuda.empty_cache()
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
}
|
222 |
-
|
223 |
-
print("Running inference...")
|
224 |
-
result = lazy_pipe(**options).images[0]
|
225 |
-
print("Image processing completed successfully")
|
226 |
-
return result
|
227 |
-
except Exception as e:
|
228 |
-
print(f"Error during image processing: {str(e)}")
|
229 |
-
raise gr.Error(f"An error occurred: {str(e)}")
|
230 |
|
231 |
# Gradio interface
|
232 |
with gr.Blocks() as demo:
|
|
|
11 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
12 |
import gradio as gr
|
13 |
import spaces
|
14 |
+
import time
|
15 |
|
16 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
17 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
|
53 |
|
54 |
download_models()
|
55 |
|
|
|
|
|
56 |
def timer_func(func):
|
57 |
def wrapper(*args, **kwargs):
|
58 |
start_time = time.time()
|
|
|
70 |
def load(self):
|
71 |
if self.pipe is None:
|
72 |
print("Starting to load the pipeline...")
|
73 |
+
self.pipe = self.setup_pipeline()
|
74 |
+
print(f"Moving pipeline to device: {device}")
|
75 |
+
self.pipe.to(device)
|
76 |
+
if USE_TORCH_COMPILE:
|
77 |
+
print("Compiling the model...")
|
78 |
+
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
@timer_func
|
81 |
def setup_pipeline(self):
|
82 |
print("Setting up the pipeline...")
|
|
|
83 |
controlnet = ControlNetModel.from_single_file(
|
84 |
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
|
85 |
)
|
|
|
|
|
|
|
86 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
|
|
|
|
|
|
|
87 |
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
|
88 |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
|
89 |
model_path,
|
|
|
92 |
use_safetensors=True,
|
93 |
safety_checker=safety_checker
|
94 |
)
|
|
|
|
|
|
|
95 |
vae = AutoencoderKL.from_single_file(
|
96 |
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
|
97 |
torch_dtype=torch.float16
|
98 |
)
|
99 |
pipe.vae = vae
|
|
|
|
|
|
|
|
|
100 |
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
|
101 |
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
|
|
|
|
|
|
|
102 |
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
|
103 |
pipe.fuse_lora(lora_scale=0.5)
|
104 |
pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
|
|
|
|
|
|
105 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
106 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
|
|
|
|
107 |
return pipe
|
108 |
|
109 |
def __call__(self, *args, **kwargs):
|
|
|
110 |
return self.pipe(*args, **kwargs)
|
111 |
|
112 |
class LazyRealESRGAN:
|
|
|
141 |
else:
|
142 |
img = lazy_realesrgan_x4.predict(img)
|
143 |
return img
|
144 |
+
|
145 |
@timer_func
|
146 |
def create_hdr_effect(original_image, hdr):
|
147 |
if hdr == 0:
|
|
|
157 |
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
|
158 |
|
159 |
lazy_pipe = LazyLoadPipeline()
|
160 |
+
lazy_pipe.load() # Load the pipeline outside of the GPU function
|
161 |
+
|
162 |
+
def prepare_image(input_image, resolution, hdr):
|
163 |
+
condition_image = resize_and_upscale(input_image, resolution)
|
164 |
+
condition_image = create_hdr_effect(condition_image, hdr)
|
165 |
+
return condition_image
|
166 |
|
167 |
@spaces.GPU
|
168 |
@timer_func
|
169 |
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
170 |
print("Starting image processing...")
|
171 |
torch.cuda.empty_cache()
|
172 |
+
|
173 |
+
condition_image = prepare_image(input_image, resolution, hdr)
|
174 |
+
|
175 |
+
prompt = "masterpiece, best quality, highres"
|
176 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
177 |
+
|
178 |
+
options = {
|
179 |
+
"prompt": prompt,
|
180 |
+
"negative_prompt": negative_prompt,
|
181 |
+
"image": condition_image,
|
182 |
+
"control_image": condition_image,
|
183 |
+
"width": condition_image.size[0],
|
184 |
+
"height": condition_image.size[1],
|
185 |
+
"strength": strength,
|
186 |
+
"num_inference_steps": num_inference_steps,
|
187 |
+
"guidance_scale": guidance_scale,
|
188 |
+
"generator": torch.Generator(device=device).manual_seed(0),
|
189 |
+
}
|
190 |
+
|
191 |
+
print("Running inference...")
|
192 |
+
result = lazy_pipe(**options).images[0]
|
193 |
+
print("Image processing completed successfully")
|
194 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
# Gradio interface
|
197 |
with gr.Blocks() as demo:
|