Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -12,15 +12,8 @@ import numpy as np
|
|
12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
13 |
import gradio as gr
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
CONTROLNET_CACHE = "controlnet-cache"
|
18 |
-
SCHEDULERS = {
|
19 |
-
"DDIM": DDIMScheduler,
|
20 |
-
"DPMSolverMultistep": DPMSolverMultistepScheduler,
|
21 |
-
"K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
|
22 |
-
"K_EULER": EulerDiscreteScheduler,
|
23 |
-
}
|
24 |
|
25 |
# Function to download files
|
26 |
def download_file(url, folder_path, filename):
|
@@ -42,12 +35,7 @@ def download_file(url, folder_path, filename):
|
|
42 |
|
43 |
# Download necessary models and files
|
44 |
|
45 |
-
|
46 |
-
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
47 |
-
prompt = "masterpiece, best quality, highres"
|
48 |
-
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
49 |
-
result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
|
50 |
-
return result
|
51 |
|
52 |
# MODEL
|
53 |
download_file(
|
@@ -147,8 +135,6 @@ pipe.load_lora_weights("models/Lora/more_details.safetensors")
|
|
147 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
148 |
|
149 |
# Move the pipeline to the device and enable memory efficient attention
|
150 |
-
pipe = pipe.to(device)
|
151 |
-
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
152 |
|
153 |
# Enable FreeU
|
154 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
@@ -250,6 +236,15 @@ def process_image(input_image, prompt, negative_prompt, resolution=2048, num_inf
|
|
250 |
|
251 |
return result
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
# Simple options
|
254 |
simple_options = [
|
255 |
gr.Image(type="pil", label="Input Image"),
|
|
|
12 |
from diffusers.models.attention_processor import AttnProcessor2_0
|
13 |
import gradio as gr
|
14 |
|
15 |
+
USE_TORCH_COMPILE = 0
|
16 |
+
ENABLE_CPU_OFFLOAD = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Function to download files
|
19 |
def download_file(url, folder_path, filename):
|
|
|
35 |
|
36 |
# Download necessary models and files
|
37 |
|
38 |
+
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# MODEL
|
41 |
download_file(
|
|
|
135 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
136 |
|
137 |
# Move the pipeline to the device and enable memory efficient attention
|
|
|
|
|
138 |
|
139 |
# Enable FreeU
|
140 |
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
|
|
|
236 |
|
237 |
return result
|
238 |
|
239 |
+
@spaces.GPU
|
240 |
+
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
|
241 |
+
pipe = pipe.to(device)
|
242 |
+
pipe.unet.set_attn_processor(AttnProcessor2_0())
|
243 |
+
prompt = "masterpiece, best quality, highres"
|
244 |
+
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
|
245 |
+
result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
|
246 |
+
return result
|
247 |
+
|
248 |
# Simple options
|
249 |
simple_options = [
|
250 |
gr.Image(type="pil", label="Input Image"),
|