Spaces:
Running
on
Zero
Running
on
Zero
omni-research
commited on
Commit
·
dcd4560
1
Parent(s):
aa4801f
update to tarsier2-7b-0115
Browse files- app.py +28 -27
- configs/tarser2_default_config.yaml +14 -0
- dataset/custom_data_parsers/multi_images_parser.py +199 -0
- dataset/custom_data_parsers/object_tracking_parser.py +160 -0
- dataset/custom_data_parsers/standard_vision_parser.py +255 -0
- dataset/custom_data_parsers/utils.py +452 -0
- dataset/custom_data_parsers/utils_visualize.py +54 -0
- dataset/custom_data_parsers/video_permutation_parser.py +137 -0
- dataset/mm_dataset.py +0 -62
- dataset/processor.py +0 -164
- dataset/tarsier_datamodule.py +284 -0
- dataset/tarsier_processor.py +240 -0
- dataset/utils.py +58 -0
- models/modeling_qwen2_vl_fast.py +1320 -0
- models/modeling_tarsier.py +290 -545
- models/utils.py +17 -0
- requirements.txt +2 -1
- tools/color.py +36 -0
- tools/conversation.py +98 -64
- tools/rw_utils.py +64 -0
- tools/utils.py +14 -34
app.py
CHANGED
@@ -13,19 +13,22 @@
|
|
13 |
# limitations under the License.
|
14 |
|
15 |
# copy and modify from: https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/demo/demo.py
|
16 |
-
|
|
|
17 |
from copy import deepcopy
|
18 |
import gradio as gr
|
19 |
from gradio.themes.utils import colors, fonts, sizes
|
20 |
from tools.conversation import Chat, conv_templates
|
21 |
from tools.utils import load_model_and_processor, file_to_base64
|
22 |
-
from dataset.
|
23 |
import os
|
24 |
import torch
|
|
|
25 |
|
26 |
# huggingface-cli login
|
27 |
|
28 |
-
model_path = os.getenv("MODEL_PATH", "omni-research/Tarsier2-7b")
|
|
|
29 |
max_n_frames = int(os.getenv("MAX_N_FRAMES", 16))
|
30 |
debug = False
|
31 |
device = 'cuda' if not debug else 'cpu'
|
@@ -34,13 +37,14 @@ device = 'cuda' if not debug else 'cpu'
|
|
34 |
# Model Initialization
|
35 |
# ========================================
|
36 |
def init_model():
|
|
|
37 |
print("Start Initialization...")
|
38 |
# if torch.cuda.is_available():
|
39 |
if not debug:
|
40 |
-
model, processor = load_model_and_processor(model_path,
|
41 |
else:
|
42 |
print(f"No Valid GPU! Lauch in debug mode!")
|
43 |
-
processor =
|
44 |
model = None
|
45 |
chat = Chat(model, processor, device, debug)
|
46 |
print('Initialization Finished')
|
@@ -50,13 +54,11 @@ def init_model():
|
|
50 |
# ========================================
|
51 |
# Gradio Setting
|
52 |
# ========================================
|
53 |
-
def gradio_reset(chat_state, img_file
|
54 |
if chat_state is not None:
|
55 |
chat_state.messages = []
|
56 |
img_file = None
|
57 |
-
|
58 |
-
img_list = []
|
59 |
-
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_file, img_list
|
60 |
|
61 |
|
62 |
def upload_img(gr_img, gr_video, gr_gif, chat_state, num_frames):
|
@@ -64,24 +66,24 @@ def upload_img(gr_img, gr_video, gr_gif, chat_state, num_frames):
|
|
64 |
conv_type = ''
|
65 |
if 'tarsier2-7b' in model_path.lower():
|
66 |
conv_type = 'tarsier2-7b'
|
67 |
-
elif '7b' in model_path.lower():
|
68 |
-
|
69 |
-
elif '13b' in model_path.lower():
|
70 |
-
|
71 |
-
elif '34b' in model_path.lower():
|
72 |
-
|
73 |
else:
|
74 |
raise ValueError(f"Unknow model: {model_path}")
|
75 |
chat_state = deepcopy(conv_templates[conv_type])
|
76 |
|
77 |
-
img_list = []
|
78 |
if gr_img is None and gr_video is None and gr_gif is None:
|
79 |
return None, None, None, gr.update(interactive=True), gr.update(interactive=True, placeholder='Please upload video/image first!'), chat_state, None, None
|
80 |
if gr_video or gr_img or gr_gif:
|
81 |
for img_file in [gr_video, gr_img, gr_gif]:
|
82 |
if img_file is not None:
|
83 |
break
|
84 |
-
|
|
|
85 |
|
86 |
|
87 |
def gradio_ask(user_message, chatbot, chat_state):
|
@@ -91,13 +93,13 @@ def gradio_ask(user_message, chatbot, chat_state):
|
|
91 |
chatbot = chatbot + [[user_message, None]]
|
92 |
return '', chatbot, chat_state
|
93 |
|
94 |
-
@spaces.GPU(duration=120)
|
95 |
-
def gradio_answer(chatbot, chat_state, img_file,
|
96 |
-
llm_message, chat_state
|
97 |
chatbot[-1][1] = llm_message
|
98 |
print(chat_state)
|
99 |
print(f"Answer: {llm_message}")
|
100 |
-
return chatbot, chat_state
|
101 |
|
102 |
|
103 |
class OpenGVLab(gr.themes.base.Base):
|
@@ -203,7 +205,6 @@ with gr.Blocks(title="Tarsier",theme=gvlabtheme,css="#chatbot {overflow:auto; he
|
|
203 |
|
204 |
with gr.Column(visible=True) as input_raws:
|
205 |
chat_state = gr.State()
|
206 |
-
img_list = gr.State()
|
207 |
img_file = gr.State()
|
208 |
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
|
209 |
with gr.Row():
|
@@ -216,19 +217,19 @@ with gr.Blocks(title="Tarsier",theme=gvlabtheme,css="#chatbot {overflow:auto; he
|
|
216 |
gr.Examples(examples=[
|
217 |
[f"examples/test1.mp4", "Describe the video in detail."],
|
218 |
[f"examples/test2.mp4", "Are they having a pleasant conversation?"],
|
219 |
-
], inputs=[up_video, text_input])
|
220 |
|
221 |
chat = init_model()
|
222 |
-
upload_button.click(upload_img, [up_image, up_video, up_gif, chat_state, num_frames], [up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file
|
223 |
|
224 |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
225 |
-
gradio_answer, [chatbot, chat_state, img_file,
|
226 |
)
|
227 |
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
228 |
-
gradio_answer, [chatbot, chat_state, img_file,
|
229 |
)
|
230 |
run.click(lambda: "", None, text_input)
|
231 |
-
clear.click(gradio_reset, [chat_state, img_file
|
232 |
|
233 |
|
234 |
demo.launch()
|
|
|
13 |
# limitations under the License.
|
14 |
|
15 |
# copy and modify from: https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/demo/demo.py
|
16 |
+
|
17 |
+
import spaces # for deploying on huggingface ZeroGPU
|
18 |
from copy import deepcopy
|
19 |
import gradio as gr
|
20 |
from gradio.themes.utils import colors, fonts, sizes
|
21 |
from tools.conversation import Chat, conv_templates
|
22 |
from tools.utils import load_model_and_processor, file_to_base64
|
23 |
+
from dataset.tarsier_datamodule import init_processor
|
24 |
import os
|
25 |
import torch
|
26 |
+
import yaml
|
27 |
|
28 |
# huggingface-cli login
|
29 |
|
30 |
+
model_path = os.getenv("MODEL_PATH", "omni-research/Tarsier2-7b-0115")
|
31 |
+
config_path = "configs/tarser2_default_config.yaml"
|
32 |
max_n_frames = int(os.getenv("MAX_N_FRAMES", 16))
|
33 |
debug = False
|
34 |
device = 'cuda' if not debug else 'cpu'
|
|
|
37 |
# Model Initialization
|
38 |
# ========================================
|
39 |
def init_model():
|
40 |
+
config = yaml.safe_load(open(config_path, 'r'))
|
41 |
print("Start Initialization...")
|
42 |
# if torch.cuda.is_available():
|
43 |
if not debug:
|
44 |
+
model, processor = load_model_and_processor(model_path, config)
|
45 |
else:
|
46 |
print(f"No Valid GPU! Lauch in debug mode!")
|
47 |
+
processor = init_processor(model_path, config)
|
48 |
model = None
|
49 |
chat = Chat(model, processor, device, debug)
|
50 |
print('Initialization Finished')
|
|
|
54 |
# ========================================
|
55 |
# Gradio Setting
|
56 |
# ========================================
|
57 |
+
def gradio_reset(chat_state, img_file):
|
58 |
if chat_state is not None:
|
59 |
chat_state.messages = []
|
60 |
img_file = None
|
61 |
+
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_file
|
|
|
|
|
62 |
|
63 |
|
64 |
def upload_img(gr_img, gr_video, gr_gif, chat_state, num_frames):
|
|
|
66 |
conv_type = ''
|
67 |
if 'tarsier2-7b' in model_path.lower():
|
68 |
conv_type = 'tarsier2-7b'
|
69 |
+
# elif '7b' in model_path.lower():
|
70 |
+
# conv_type = 'tarsier-7b'
|
71 |
+
# elif '13b' in model_path.lower():
|
72 |
+
# conv_type = 'tarsier-13b'
|
73 |
+
# elif '34b' in model_path.lower():
|
74 |
+
# conv_type = 'tarsier-34b'
|
75 |
else:
|
76 |
raise ValueError(f"Unknow model: {model_path}")
|
77 |
chat_state = deepcopy(conv_templates[conv_type])
|
78 |
|
|
|
79 |
if gr_img is None and gr_video is None and gr_gif is None:
|
80 |
return None, None, None, gr.update(interactive=True), gr.update(interactive=True, placeholder='Please upload video/image first!'), chat_state, None, None
|
81 |
if gr_video or gr_img or gr_gif:
|
82 |
for img_file in [gr_video, gr_img, gr_gif]:
|
83 |
if img_file is not None:
|
84 |
break
|
85 |
+
chat_state.messages.append([chat_state.roles[0], {"type": "video", "text": img_file}])
|
86 |
+
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_file
|
87 |
|
88 |
|
89 |
def gradio_ask(user_message, chatbot, chat_state):
|
|
|
93 |
chatbot = chatbot + [[user_message, None]]
|
94 |
return '', chatbot, chat_state
|
95 |
|
96 |
+
@spaces.GPU(duration=120) # for deploying on huggingface ZeroGPU
|
97 |
+
def gradio_answer(chatbot, chat_state, img_file, top_p, temperature, n_frames=None):
|
98 |
+
llm_message, chat_state = chat.answer(conv=chat_state, n_frames=n_frames, max_new_tokens=256, num_beams=1, temperature=temperature, top_p=top_p)
|
99 |
chatbot[-1][1] = llm_message
|
100 |
print(chat_state)
|
101 |
print(f"Answer: {llm_message}")
|
102 |
+
return chatbot, chat_state
|
103 |
|
104 |
|
105 |
class OpenGVLab(gr.themes.base.Base):
|
|
|
205 |
|
206 |
with gr.Column(visible=True) as input_raws:
|
207 |
chat_state = gr.State()
|
|
|
208 |
img_file = gr.State()
|
209 |
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat')
|
210 |
with gr.Row():
|
|
|
217 |
gr.Examples(examples=[
|
218 |
[f"examples/test1.mp4", "Describe the video in detail."],
|
219 |
[f"examples/test2.mp4", "Are they having a pleasant conversation?"],
|
220 |
+
], inputs=[up_video, text_input])
|
221 |
|
222 |
chat = init_model()
|
223 |
+
upload_button.click(upload_img, [up_image, up_video, up_gif, chat_state, num_frames], [up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file])
|
224 |
|
225 |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
226 |
+
gradio_answer, [chatbot, chat_state, img_file, top_p, temperature, num_frames], [chatbot, chat_state]
|
227 |
)
|
228 |
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then(
|
229 |
+
gradio_answer, [chatbot, chat_state, img_file, top_p, temperature, num_frames], [chatbot, chat_state]
|
230 |
)
|
231 |
run.click(lambda: "", None, text_input)
|
232 |
+
clear.click(gradio_reset, [chat_state, img_file], [chatbot, up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file], queue=False)
|
233 |
|
234 |
|
235 |
demo.launch()
|
configs/tarser2_default_config.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
max_n_frames: 256
|
2 |
+
n_frames: 16
|
3 |
+
max_pixels: 460800 # 1280 * 720 // 2
|
4 |
+
min_pixels: 0
|
5 |
+
max_seq_len: 16384
|
6 |
+
is_training: false # 会影响:1. 训练和测试时采帧不同;2. 测试时忽略 response。
|
7 |
+
print_data_error: true
|
8 |
+
is_training: false
|
9 |
+
do_image_padding: false
|
10 |
+
do_image_crop: false
|
11 |
+
do_image_resize: false
|
12 |
+
video_sampling_strategy: {'video_sampler_version': 'v1', 'force_frames_n_divisible': 1, 'use_multi_images_for_video': true}
|
13 |
+
prompt: ""
|
14 |
+
train_task: sft
|
dataset/custom_data_parsers/multi_images_parser.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
import random
|
3 |
+
import re
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from .utils import sample_video, read_image
|
7 |
+
|
8 |
+
class MultiImagesParser:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
n_frames=8,
|
12 |
+
is_training=True,
|
13 |
+
):
|
14 |
+
self.n_frames = n_frames
|
15 |
+
self.is_training = is_training
|
16 |
+
# fmt: off
|
17 |
+
self.data_temp = {
|
18 |
+
"text": [
|
19 |
+
[{
|
20 |
+
"prompt": "Describe the image in short.",
|
21 |
+
"response": "A rollerblader rides high in a full pipe while others watch"
|
22 |
+
}],
|
23 |
+
[{
|
24 |
+
"prompt": "Describe the image in short.",
|
25 |
+
"response": "A woman in winter clothes is on the sidewalk with a phone."
|
26 |
+
}]
|
27 |
+
],
|
28 |
+
"image": [
|
29 |
+
{
|
30 |
+
"image_file": "/mnt/bn/videonaslq/images/flickr30k/images/3371533654.jpg"
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"image_file": "/mnt/bn/videonaslq/images/coco/train2014/COCO_train2014_000000177950.jpg"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"video_file": "/mnt/bn/llmdatalq/jiangnan/video_generation/webvid_10M_download/20230609/videos/011851_011900/1047443473.mp4",
|
37 |
+
"frame_indices": [0, 85, 171, 256, 342, 427, 513, 598]
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"dataset": "coco",
|
41 |
+
"task": "multi_images",
|
42 |
+
"image_processing_config": {},
|
43 |
+
}
|
44 |
+
# fmt: on
|
45 |
+
|
46 |
+
def check_format(self, data_dict: Dict, image_processing_config: Dict):
|
47 |
+
assert data_dict['dataset'] in ['coco', 'sharegpt4v_cap100k', 'sharegpt4v_mix665k', 'webvid', 'movie'], data_dict
|
48 |
+
|
49 |
+
# 目前多图数据应该没有包含坐标的数据吧
|
50 |
+
if image_processing_config.get('has_coordinates', False):
|
51 |
+
raise ValueError(f'do_crop and has_coordinates cannot be True at the same time in MultiImagesParser!')
|
52 |
+
|
53 |
+
# 检查是否能匹配到坐标
|
54 |
+
texts = data_dict['text']
|
55 |
+
for text in texts:
|
56 |
+
match = re.search(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', text['prompt'] + text['response'])
|
57 |
+
if match:
|
58 |
+
print(f'[Warning] 疑似检测到包含坐标的数据:{data_dict}')
|
59 |
+
|
60 |
+
|
61 |
+
def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
|
62 |
+
self.check_format(data_dict, image_processing_config)
|
63 |
+
|
64 |
+
# shuffle
|
65 |
+
texts = data_dict['text']
|
66 |
+
images = data_dict['image']
|
67 |
+
images = self.load_images(images)
|
68 |
+
idxs = list(range(len(texts)))
|
69 |
+
random.shuffle(idxs)
|
70 |
+
texts = [texts[i] for i in idxs]
|
71 |
+
images = [images[i] for i in idxs]
|
72 |
+
|
73 |
+
# sample n_frames
|
74 |
+
if isinstance(self.n_frames, int):
|
75 |
+
n_frames = random.choice(list(range(1, self.n_frames + 1)))
|
76 |
+
else:
|
77 |
+
n_frames = random.choice(self.n_frames)
|
78 |
+
texts = texts[: n_frames]
|
79 |
+
images = images[: n_frames]
|
80 |
+
|
81 |
+
dataset = data_dict['dataset']
|
82 |
+
if dataset in ['coco', 'sharegpt4v_cap100k', 'webvid', 'movie']:
|
83 |
+
prompt, response = self.transform_for_caption_task(texts, dataset, images)
|
84 |
+
else:
|
85 |
+
prompt, response = self.transform_for_qa_task(texts, dataset, images)
|
86 |
+
|
87 |
+
messages = [
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": [
|
91 |
+
*[{"type": "image", "image": img} for img in images],
|
92 |
+
{"type": "text", "text": prompt},
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"role": "assistant",
|
97 |
+
"content": [
|
98 |
+
{"type": "text", "text": response}
|
99 |
+
]
|
100 |
+
}
|
101 |
+
]
|
102 |
+
|
103 |
+
return messages
|
104 |
+
|
105 |
+
def transform_for_caption_task(self, texts, dataset, images):
|
106 |
+
idx = random.choice(list(range(len(texts))))
|
107 |
+
|
108 |
+
if dataset == 'coco':
|
109 |
+
if len(texts) == 1:
|
110 |
+
prompt = 'Describe the image in short.'
|
111 |
+
else:
|
112 |
+
prompt = f'Describe the images starting from frame {idx + 1} in short in order.'
|
113 |
+
elif dataset == 'sharegpt4v_cap100k':
|
114 |
+
if len(texts) == 1:
|
115 |
+
prompt = 'Describe the image in detail.'
|
116 |
+
else:
|
117 |
+
prompt = f'Describe the images starting from frame {idx + 1} in detail in order.'
|
118 |
+
else:
|
119 |
+
if len(texts) == 1:
|
120 |
+
prompt = 'Describe the image.'
|
121 |
+
else:
|
122 |
+
prompt = f'Describe the images starting from frame {idx + 1} in order.'
|
123 |
+
response = ''
|
124 |
+
for i, text in enumerate(texts):
|
125 |
+
if i < idx:
|
126 |
+
continue
|
127 |
+
if not isinstance(text, dict):
|
128 |
+
text = random.choice(text)
|
129 |
+
resp = text['response']
|
130 |
+
response += f'{resp}\n'
|
131 |
+
return prompt, response
|
132 |
+
|
133 |
+
def transform_for_qa_task(self, texts, dataset, images):
|
134 |
+
prompt, response = '', ''
|
135 |
+
for i, text in enumerate(texts):
|
136 |
+
if not isinstance(text, dict):
|
137 |
+
text = random.choice(text)
|
138 |
+
if len(texts) > 1:
|
139 |
+
prompt += f'Question for frame {i+1}:\n' + text['prompt'] + '\n'
|
140 |
+
response += f'Answer to question of frame {i+1}:\n' + text['response'] + '\n'
|
141 |
+
else:
|
142 |
+
prompt += text['prompt'] + '\n'
|
143 |
+
response += text['response'] + '\n'
|
144 |
+
return prompt, response
|
145 |
+
|
146 |
+
|
147 |
+
def load_images(self, image_items: List[Dict]) -> List[Image.Image]:
|
148 |
+
"""
|
149 |
+
image_items: List[Dict]. each item like:
|
150 |
+
{"video_file": "path/to/video", "frame_indices": [1]}
|
151 |
+
or
|
152 |
+
{"image_file": "path/to/image"}
|
153 |
+
"""
|
154 |
+
if image_items is None:
|
155 |
+
raise ValueError(f'image_items is None!')
|
156 |
+
|
157 |
+
if isinstance(image_items, dict):
|
158 |
+
image_items = [image_items]
|
159 |
+
|
160 |
+
images = []
|
161 |
+
|
162 |
+
for image_item in image_items:
|
163 |
+
|
164 |
+
if 'video_file' in image_item:
|
165 |
+
file_key = 'video_file'
|
166 |
+
elif 'image_file' in image_item:
|
167 |
+
file_key = 'image_file'
|
168 |
+
else:
|
169 |
+
raise KeyError(f'video_file or image_file not in {image_item}')
|
170 |
+
|
171 |
+
file_path = image_item[file_key]
|
172 |
+
if file_key == 'video_file':
|
173 |
+
frame_indices = image_item.get('frame_indices', None)
|
174 |
+
if frame_indices is None:
|
175 |
+
raise ValueError(f'read 0 frame: {image_item}')
|
176 |
+
if isinstance(frame_indices, int):
|
177 |
+
frame_indices = [frame_indices]
|
178 |
+
frames = sample_video(file_path, frame_indices = frame_indices)
|
179 |
+
images.extend(frames)
|
180 |
+
else:
|
181 |
+
if isinstance(file_path, str):
|
182 |
+
file_path = [file_path]
|
183 |
+
images.extend([read_image(f) for f in file_path])
|
184 |
+
|
185 |
+
return images
|
186 |
+
|
187 |
+
if __name__ == '__main__':
|
188 |
+
# python3 -m xenon_generation.data.custom_data_parsers.multi_images_parser
|
189 |
+
|
190 |
+
from tqdm import tqdm
|
191 |
+
from tools.rw_utils import read_jsonlines
|
192 |
+
|
193 |
+
lines = read_jsonlines('/mnt/bn/videonaslq/VideoCaption/datasets_1009/sharegpt4v_cap100k/part_36.jsonl')
|
194 |
+
lines = lines[:10]
|
195 |
+
parser = MultiImagesParser(n_frames=8)
|
196 |
+
for i, l in tqdm(enumerate(lines)):
|
197 |
+
l_image_processing_config = l.get('image_processing_config', {})
|
198 |
+
messages = parser.transform(l, l_image_processing_config)
|
199 |
+
print(messages)
|
dataset/custom_data_parsers/object_tracking_parser.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import random
|
3 |
+
import re
|
4 |
+
|
5 |
+
from torchvision import transforms
|
6 |
+
|
7 |
+
from .utils import sample_video
|
8 |
+
|
9 |
+
def return_same(x):
|
10 |
+
return x
|
11 |
+
|
12 |
+
def _bbox_transform_for_padding(bbox, frame):
|
13 |
+
w1, h1, w2, h2 = bbox
|
14 |
+
width, height = frame.size
|
15 |
+
if width == height:
|
16 |
+
pass
|
17 |
+
elif width > height:
|
18 |
+
h1 += (width - height) // 2
|
19 |
+
h2 += (width - height) // 2
|
20 |
+
height = width
|
21 |
+
else:
|
22 |
+
w1 += (height - width) // 2
|
23 |
+
w2 += (height - width) // 2
|
24 |
+
width = height
|
25 |
+
new_bbox = [w1 / width, h1 / height, w2 / width, h2 / height]
|
26 |
+
new_bbox = [round(i, 2) for i in new_bbox]
|
27 |
+
return new_bbox
|
28 |
+
|
29 |
+
def _bbox_transform_for_resize(bbox, frame):
|
30 |
+
w1, h1, w2, h2 = bbox
|
31 |
+
width, height = frame.size
|
32 |
+
new_bbox = [w1 / width, h1 / height, w2 / width, h2 / height]
|
33 |
+
new_bbox = [round(i, 2) for i in new_bbox]
|
34 |
+
return new_bbox
|
35 |
+
|
36 |
+
class InAndOutCropAndResize(object):
|
37 |
+
"""Crop and resize for in_and_out boxes data according to yuchen
|
38 |
+
Args:
|
39 |
+
size: tuple of (width, height)
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, size):
|
43 |
+
self.size = size
|
44 |
+
|
45 |
+
def __call__(self, img):
|
46 |
+
"""
|
47 |
+
Args:
|
48 |
+
img (PIL Image): PIL Image
|
49 |
+
Returns:
|
50 |
+
PIL Image: PIL image.
|
51 |
+
"""
|
52 |
+
w = img.width
|
53 |
+
h = img.height
|
54 |
+
x0 = int(w * 0.5 - h * 0.375)
|
55 |
+
y0 = int(h * 0.125)
|
56 |
+
x1 = int(w * 0.5 + h * 0.375)
|
57 |
+
y1 = int(h * 0.875)
|
58 |
+
img = img.crop((x0, y0, x1, y1)).resize(self.size)
|
59 |
+
return img
|
60 |
+
|
61 |
+
|
62 |
+
class ObjectTrackingParser:
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
n_frames = 8,
|
66 |
+
max_objects = 3,
|
67 |
+
is_training=True,
|
68 |
+
):
|
69 |
+
self.n_frames = n_frames
|
70 |
+
self.max_objects = max_objects
|
71 |
+
self.is_training = is_training
|
72 |
+
self.img_transform = self.get_img_transform()
|
73 |
+
# fmt: off
|
74 |
+
self.data_temp = {
|
75 |
+
"video_file": "/mnt/bn/llmdatalq/jiaxin/hdvila/20230926/saved/saved_video_clips/0076/lOjn__YCec4.624.1104.mp4",
|
76 |
+
"frame_indices": [154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202],
|
77 |
+
"objects": {
|
78 |
+
"0": {
|
79 |
+
"phrase": "person",
|
80 |
+
"all_frame_bounding_boxes": [[2, 0, 255, 250], [17, 0, 255, 251], [35, 0, 255, 253], [44, 0, 255, 255], [52, 0, 255, 255], [54, 0, 255, 255], [63, 0, 255, 255], [60, 0, 255, 255], [54, 0, 253, 255], [43, 0, 250, 255], [36, 1, 249, 255], [36, 0, 252, 254], [41, 0, 252, 254], [61, 0, 255, 253], [68, 4, 255, 255], [74, 8, 255, 255], [91, 3, 255, 255]]
|
81 |
+
}
|
82 |
+
},
|
83 |
+
"task": "object_tracking",
|
84 |
+
"dataset": "hdvila"
|
85 |
+
}
|
86 |
+
# fmt: on
|
87 |
+
|
88 |
+
def check_format(self, data_dict: Dict, image_processing_config: Dict):
|
89 |
+
# box tracking 数据不支持 do_crop!!!
|
90 |
+
if image_processing_config.get('do_crop', False):
|
91 |
+
raise ValueError(f'do_crop is not supported in ObjectTrackingParser!')
|
92 |
+
|
93 |
+
def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
|
94 |
+
self.check_format(data_dict, image_processing_config)
|
95 |
+
|
96 |
+
bbox_transform = _bbox_transform_for_padding if image_processing_config['do_padding'] else _bbox_transform_for_resize
|
97 |
+
|
98 |
+
# sample n_frames
|
99 |
+
if isinstance(self.n_frames, int):
|
100 |
+
n_frames = self.n_frames
|
101 |
+
else:
|
102 |
+
n_frames = random.choice(self.n_frames)
|
103 |
+
total_frames = list(range(len(data_dict['frame_indices'])))
|
104 |
+
idxs = random.sample(total_frames, min(n_frames, len(total_frames)))
|
105 |
+
idxs.sort()
|
106 |
+
|
107 |
+
frame_indices = [data_dict['frame_indices'][i] for i in idxs]
|
108 |
+
frames = sample_video(data_dict['video_file'], frame_indices=frame_indices)
|
109 |
+
img_transform = self.img_transform[data_dict['dataset']]
|
110 |
+
frames = [img_transform(f) for f in frames]
|
111 |
+
|
112 |
+
objects = []
|
113 |
+
for _, o in data_dict['objects'].items():
|
114 |
+
if o is None:
|
115 |
+
continue
|
116 |
+
all_frame_bounding_boxes = [o['all_frame_bounding_boxes'][i] for i in idxs]
|
117 |
+
all_frame_bounding_boxes_t = []
|
118 |
+
for bbox, frame in zip(all_frame_bounding_boxes, frames):
|
119 |
+
all_frame_bounding_boxes_t.append(bbox_transform(bbox, frame))
|
120 |
+
objects.append(all_frame_bounding_boxes_t)
|
121 |
+
if len(objects) >= self.max_objects:
|
122 |
+
break
|
123 |
+
|
124 |
+
prompt = "Given the bounding box coordinates of these objects in the first frame, output the bounding box coordinates in the following frames.\n{}"
|
125 |
+
response = ''
|
126 |
+
|
127 |
+
object_info = ''
|
128 |
+
for i, o in enumerate(objects):
|
129 |
+
object_info += f'object {i+1}: {o[0]}\n'
|
130 |
+
response += f'object {i+1}: {o[1:]}\n'
|
131 |
+
response = response.strip()
|
132 |
+
prompt = prompt.format(object_info)
|
133 |
+
|
134 |
+
messages = [
|
135 |
+
{
|
136 |
+
"role": "user",
|
137 |
+
"content": [
|
138 |
+
{"type": "video", "video": frames},
|
139 |
+
{"type": "text", "text": prompt}
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"role": "assistant",
|
144 |
+
"content": [
|
145 |
+
{"type": "text", "text": response}
|
146 |
+
]
|
147 |
+
}
|
148 |
+
]
|
149 |
+
|
150 |
+
return messages
|
151 |
+
|
152 |
+
def get_img_transform(self):
|
153 |
+
return {
|
154 |
+
'webvid': return_same,
|
155 |
+
'hdvila': transforms.Compose([
|
156 |
+
transforms.Resize(size=256),
|
157 |
+
transforms.CenterCrop(size=(256, 256))
|
158 |
+
]),
|
159 |
+
'hdvila_in_and_out_boxes': InAndOutCropAndResize(size=(256, 256))
|
160 |
+
}
|
dataset/custom_data_parsers/standard_vision_parser.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
from PIL import Image
|
3 |
+
import random
|
4 |
+
|
5 |
+
from .utils import sample_video, read_image, adjust_bbox, filter_ocr_polygon
|
6 |
+
|
7 |
+
|
8 |
+
class VisionParser:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
n_frames=8,
|
12 |
+
max_n_frames=256,
|
13 |
+
is_training=True,
|
14 |
+
video_sampling_strategy={},
|
15 |
+
):
|
16 |
+
self.n_frames = n_frames
|
17 |
+
self.max_n_frames = max_n_frames
|
18 |
+
self.is_training = is_training
|
19 |
+
self.video_sampling_strategy = video_sampling_strategy
|
20 |
+
|
21 |
+
# fmt: off
|
22 |
+
self.data_temp = {
|
23 |
+
"messages": [
|
24 |
+
{
|
25 |
+
"role": "user",
|
26 |
+
"content": [
|
27 |
+
{"type": "text", "text": "Describe the image and the video."},
|
28 |
+
# 支持的 image 格式:
|
29 |
+
{"type": "image", "image": {"image_file": "/path/to/image"}},
|
30 |
+
{"type": "image", "image": {"video_file": "/path/to/video", "frame_indices": 0}},
|
31 |
+
# 支持的 video 格式:
|
32 |
+
{"type": "video", "video": {"video_file": "/path/to/video"}},
|
33 |
+
{"type": "video", "video": {"video_file": "/path/to/video", "frame_indices": [0, 1, 2]}},
|
34 |
+
{"type": "video", "video": {"video_file": "/path/to/video", "start_frame": 0, "end_frame": 100}},
|
35 |
+
{"type": "video", "video": {"video_file": "/path/to/video", "time_indices": [0, 1, 2]}},
|
36 |
+
{"type": "video", "video": {"video_file": "/path/to/video", "start_time": 0, "end_time": 100}},
|
37 |
+
{"type": "video", "video": {"image_file": ["/path/to/image"]}, "frame_indices": [0, 1, 2]},
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"role": "assistant",
|
42 |
+
"content": [
|
43 |
+
{"type": "text","text": "xxx"}
|
44 |
+
]
|
45 |
+
}
|
46 |
+
],
|
47 |
+
"dataset": "LSMDC",
|
48 |
+
"task": "video/caption"
|
49 |
+
}
|
50 |
+
# fmt: on
|
51 |
+
|
52 |
+
def check_format(self, data_dict: Dict, image_processing_config: Dict):
|
53 |
+
if image_processing_config.get('do_crop', False) and image_processing_config.get('has_coordinates', False):
|
54 |
+
raise ValueError(f'do_crop and has_coordinates cannot be True at the same time!')
|
55 |
+
|
56 |
+
"""
|
57 |
+
1. 将 messages 中的 image/video 替换成相应的 PIL.Image/List[PIL.Image]
|
58 |
+
2. text 的特殊处理:调整 box;过滤面积太小的OCR
|
59 |
+
"""
|
60 |
+
def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
|
61 |
+
self.check_format(data_dict, image_processing_config)
|
62 |
+
|
63 |
+
self.set_n_frames(data_dict)
|
64 |
+
|
65 |
+
first_image = None # ugly! 需要调整box/过滤面积太小的OCR的数据只有图片任务
|
66 |
+
|
67 |
+
for msg in data_dict['messages']:
|
68 |
+
if isinstance(msg['content'], dict):
|
69 |
+
msg['content'] = [msg['content']]
|
70 |
+
for content in msg['content']:
|
71 |
+
|
72 |
+
if content['type'] == 'image':
|
73 |
+
content['image'] = self.load_image_item(content['image'])
|
74 |
+
if first_image is None:
|
75 |
+
first_image = content['image']
|
76 |
+
elif content['type'] == 'video':
|
77 |
+
video = self.load_video_item(content['video'])
|
78 |
+
content['video'] = video.pop('frames')
|
79 |
+
if video:
|
80 |
+
data_dict['extra_info']['frame_disturb_info'] = video.pop('video_info', {})
|
81 |
+
elif content['type'] == 'text':
|
82 |
+
pass
|
83 |
+
else:
|
84 |
+
raise ValueError(f"content['type']={content['type']} MUST be one of ['image', 'video', 'text']")
|
85 |
+
for msg in data_dict['messages']:
|
86 |
+
for content in msg['content']:
|
87 |
+
if content['type'] == 'text':
|
88 |
+
self.postprocess_text(content, data_dict, image_processing_config, first_image)
|
89 |
+
|
90 |
+
return data_dict['messages']
|
91 |
+
|
92 |
+
# set n_frames for each vision item.
|
93 |
+
def set_n_frames(self, data_dict):
|
94 |
+
|
95 |
+
if isinstance(self.n_frames, int):
|
96 |
+
n_frames = self.n_frames
|
97 |
+
else:
|
98 |
+
n_frames = random.choice(self.n_frames)
|
99 |
+
|
100 |
+
assert n_frames <= self.max_n_frames
|
101 |
+
|
102 |
+
curr_n_frames = 0
|
103 |
+
has_dynamic = False
|
104 |
+
for msg in data_dict['messages']:
|
105 |
+
if isinstance(msg['content'], dict):
|
106 |
+
msg['content'] = [msg['content']]
|
107 |
+
|
108 |
+
for content in msg['content']:
|
109 |
+
|
110 |
+
if content['type'] == 'image':
|
111 |
+
curr_n_frames += 1
|
112 |
+
elif content['type'] == 'video':
|
113 |
+
if 'frame_indices' in content['video']:
|
114 |
+
curr_n_frames += len(content['video']['frame_indices'])
|
115 |
+
content['video']['n_frames'] = len(content['video']['frame_indices'])
|
116 |
+
elif 'time_indices' in content['video']:
|
117 |
+
curr_n_frames += len(content['video']['time_indices'])
|
118 |
+
content['video']['n_frames'] = len(content['video']['time_indices'])
|
119 |
+
elif 'min_n_frames' in content['video']:
|
120 |
+
content['video']['min_n_frames'] = int(content['video']['min_n_frames'])
|
121 |
+
curr_n_frames += content['video']['min_n_frames']
|
122 |
+
content['video']['n_frames'] = content['video']['min_n_frames']
|
123 |
+
has_dynamic = True
|
124 |
+
elif 'fps' in content['video']:
|
125 |
+
content['video']['n_frames'] = self.max_n_frames
|
126 |
+
curr_n_frames += self.max_n_frames
|
127 |
+
has_dynamic = True
|
128 |
+
else:
|
129 |
+
content['video']['n_frames'] = 0
|
130 |
+
has_dynamic = True
|
131 |
+
|
132 |
+
while curr_n_frames < n_frames and has_dynamic:
|
133 |
+
for msg in data_dict['messages']:
|
134 |
+
for content in msg['content']:
|
135 |
+
if content['type'] == 'video':
|
136 |
+
if 'frame_indices' in content['video']:
|
137 |
+
pass
|
138 |
+
elif 'time_indices' in content['video']:
|
139 |
+
pass
|
140 |
+
else:
|
141 |
+
if curr_n_frames < n_frames:
|
142 |
+
content['video']['n_frames'] += 1
|
143 |
+
curr_n_frames += 1
|
144 |
+
|
145 |
+
while curr_n_frames > self.max_n_frames and has_dynamic:
|
146 |
+
for msg in data_dict['messages']:
|
147 |
+
for content in msg['content']:
|
148 |
+
if content['type'] == 'video':
|
149 |
+
if 'frame_indices' in content['video']:
|
150 |
+
pass
|
151 |
+
elif 'time_indices' in content['video']:
|
152 |
+
pass
|
153 |
+
else:
|
154 |
+
if curr_n_frames > self.max_n_frames:
|
155 |
+
content['video']['n_frames'] -= 1
|
156 |
+
curr_n_frames -= 1
|
157 |
+
|
158 |
+
|
159 |
+
for msg in data_dict['messages']:
|
160 |
+
for content in msg['content']:
|
161 |
+
if content['type'] == 'video':
|
162 |
+
if 'frame_indices' in content['video']:
|
163 |
+
pass
|
164 |
+
elif 'time_indices' in content['video']:
|
165 |
+
pass
|
166 |
+
else:
|
167 |
+
n = self.video_sampling_strategy.get('force_frames_n_divisible', 1)
|
168 |
+
if n > 1 and content['video']['n_frames'] % n != 0:
|
169 |
+
content['video']['n_frames'] += n - content['video']['n_frames'] % n
|
170 |
+
|
171 |
+
def load_image_item(self, image_item) -> Image.Image:
|
172 |
+
"""
|
173 |
+
image_item:
|
174 |
+
{"image_file": {"lq": "/path/to/image"}}
|
175 |
+
{"video_file": {"lq": "/path/to/video"}, "frame_indices": 0}
|
176 |
+
"""
|
177 |
+
|
178 |
+
# check format
|
179 |
+
if ("image_file" not in image_item) and ("video_file" not in image_item):
|
180 |
+
raise KeyError(f"Key 'image_file' or 'video_file' not found in image_item")
|
181 |
+
if 'image_file' in image_item:
|
182 |
+
if not isinstance(image_item['image_file'], str):
|
183 |
+
raise ValueError(f"{image_item['image_file']} is not a str!")
|
184 |
+
if 'video_file' in image_item:
|
185 |
+
if not isinstance(image_item['frame_indices'], int):
|
186 |
+
raise ValueError(f"{image_item['frame_indices']} is not a int!")
|
187 |
+
|
188 |
+
if 'image_file' in image_item:
|
189 |
+
image = read_image(image_item['image_file'])
|
190 |
+
else:
|
191 |
+
frame_indices = [image_item['frame_indices']]
|
192 |
+
image = sample_video(image_item['video_file'], frame_indices = frame_indices)[0]
|
193 |
+
|
194 |
+
return image
|
195 |
+
|
196 |
+
def load_video_item(self, video_item) -> List[Image.Image]:
|
197 |
+
"""
|
198 |
+
video_item:
|
199 |
+
{"video_file": {"lq": "/path/to/video"}, "n_frames": 8}
|
200 |
+
{"video_file": {"lq": "/path/to/video"}, "frame_indices": [0, 1, 2], "n_frames": 3}
|
201 |
+
{"video_file": {"lq": "/path/to/video"}, "start_frame": 0, "end_frame": 100, "n_frames": 8}
|
202 |
+
{"video_file": {"lq": "/path/to/video"}, "time_indices": [0, 1, 2], "n_frames": 3}
|
203 |
+
{"video_file": {"lq": "/path/to/video"}, "start_time": 0, "end_time": 100, "n_frames": 8}
|
204 |
+
{"image_file": {"lq": ["/path/to/image"]}, "frame_indices": [0, 1, 2], "n_frames": 3}
|
205 |
+
"""
|
206 |
+
|
207 |
+
# check format
|
208 |
+
if ("image_file" not in video_item) and ("video_file" not in video_item):
|
209 |
+
raise KeyError(f"Key 'image_file' or 'video_file' not found in video_item")
|
210 |
+
|
211 |
+
video_path = video_item.get('video_file', video_item.get('image_file'))
|
212 |
+
n_frames = video_item.get('n_frames', None)
|
213 |
+
frame_indices = video_item.get('frame_indices', None)
|
214 |
+
start_frame = video_item.get('start_frame', None)
|
215 |
+
end_frame = video_item.get('end_frame', None)
|
216 |
+
time_indices = video_item.get('time_indices', None)
|
217 |
+
start_time = video_item.get('start_time', None)
|
218 |
+
end_time = video_item.get('end_time', None)
|
219 |
+
mask_boxes = video_item.get('mask_boxes', None)
|
220 |
+
fps = video_item.get('fps', None)
|
221 |
+
|
222 |
+
frames, frame_indices = sample_video(
|
223 |
+
video_path=video_path,
|
224 |
+
frame_indices=frame_indices,
|
225 |
+
start_frame=start_frame,
|
226 |
+
end_frame=end_frame,
|
227 |
+
n_frames=n_frames,
|
228 |
+
time_indices=time_indices,
|
229 |
+
start_time=start_time,
|
230 |
+
end_time=end_time,
|
231 |
+
sampling_fps=fps,
|
232 |
+
mask_boxes=mask_boxes,
|
233 |
+
is_training=self.is_training,
|
234 |
+
video_sampling_strategy=self.video_sampling_strategy,
|
235 |
+
return_frame_ids=True,
|
236 |
+
)
|
237 |
+
|
238 |
+
if self.video_sampling_strategy.get('use_multi_images_for_video', False):
|
239 |
+
new_frames = []
|
240 |
+
for f in frames:
|
241 |
+
new_frames.extend([f, f])
|
242 |
+
frames = new_frames
|
243 |
+
|
244 |
+
if isinstance(frame_indices, dict):
|
245 |
+
return {
|
246 |
+
'frames': frames,
|
247 |
+
'video_info': frame_indices
|
248 |
+
}
|
249 |
+
return {'frames': frames}
|
250 |
+
|
251 |
+
def postprocess_text(self, content, data_dict, image_processing_config, first_image):
|
252 |
+
if image_processing_config.get('has_coordinates') and image_processing_config.get('do_padding'):
|
253 |
+
content['text'] = adjust_bbox(content['text'], frame=first_image)
|
254 |
+
if data_dict.get('task') == 'image/OCR' and image_processing_config.get('has_coordinates'):
|
255 |
+
content['text'] = filter_ocr_polygon(content['text'])
|
dataset/custom_data_parsers/utils.py
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Dict, Union
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import tempfile
|
5 |
+
from PIL import Image, ImageSequence
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
import re
|
9 |
+
import uuid
|
10 |
+
import json
|
11 |
+
import numpy as np
|
12 |
+
import pyarrow.fs as pf
|
13 |
+
import func_timeout
|
14 |
+
from func_timeout import func_set_timeout
|
15 |
+
import math
|
16 |
+
|
17 |
+
# fmt: on
|
18 |
+
import decord
|
19 |
+
# fmt: off
|
20 |
+
|
21 |
+
|
22 |
+
def denorm_box(points, height, width):
|
23 |
+
new_points = []
|
24 |
+
for p in points:
|
25 |
+
new_points.append((round(p[0] * width), round(p[1] * height)))
|
26 |
+
return new_points
|
27 |
+
|
28 |
+
def process_image_for_tiktok(frames: List[Image.Image], mask_boxes):
|
29 |
+
mask_boxes = mask_boxes[:len(frames)]
|
30 |
+
frames = [np.array(f) for f in frames]
|
31 |
+
# assert len(mask_boxes) == len(frames)
|
32 |
+
height, width = frames[0].shape[:2]
|
33 |
+
|
34 |
+
new_frames = []
|
35 |
+
for boxes, frame in zip(mask_boxes, frames):
|
36 |
+
left, top, right, bottom = 0, 0, width, height
|
37 |
+
for box in boxes:
|
38 |
+
pts = np.array(denorm_box(box, height, width), np.int32)
|
39 |
+
upper_bound = max([p[1] for p in pts]) + 30
|
40 |
+
if bottom > upper_bound:
|
41 |
+
bottom = upper_bound
|
42 |
+
frame[pts[0][1]: pts[2][1], pts[0][0]: pts[1][0]] = 0
|
43 |
+
|
44 |
+
new_frames.append(Image.fromarray(frame[top: bottom, left: right]))
|
45 |
+
return new_frames
|
46 |
+
|
47 |
+
# 先将视频分成 n_frames 份。训练时,每份随机抽一帧;测试时,每份抽中间的那一帧。
|
48 |
+
def _sample_frame_indices_v2(
|
49 |
+
total_frames: int,
|
50 |
+
n_frames: int,
|
51 |
+
is_training=False,
|
52 |
+
video_sampling_strategy = {},
|
53 |
+
):
|
54 |
+
total_frames_idxs = list(range(total_frames))
|
55 |
+
if total_frames <= n_frames:
|
56 |
+
return total_frames_idxs
|
57 |
+
k, m = divmod(total_frames, n_frames)
|
58 |
+
frame_splits = [total_frames_idxs[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in list(range(n_frames))]
|
59 |
+
if is_training:
|
60 |
+
sample_ids = [random.choice(i) for i in frame_splits]
|
61 |
+
else:
|
62 |
+
sample_ids = [i[(len(i)+1)//2-1] for i in frame_splits]
|
63 |
+
return sample_ids
|
64 |
+
|
65 |
+
# 均匀抽帧,必采样首尾帧。
|
66 |
+
def _sample_frame_indices_v1(total_frames: int, n_frames: int, is_training=False, video_sampling_strategy = {}):
|
67 |
+
if n_frames == 1:
|
68 |
+
return [0] # sample first frame in default
|
69 |
+
if total_frames <= n_frames:
|
70 |
+
return list(range(total_frames))
|
71 |
+
sample_ids = [round(i * (total_frames - 1) / (n_frames - 1)) for i in range(n_frames)]
|
72 |
+
return sample_ids
|
73 |
+
|
74 |
+
def conduct_disturb_frame(frame_indices):
|
75 |
+
disturb_type = random.choice(['exchange', 'crop', 'reverse', 'discard'])
|
76 |
+
n_frames = len(frame_indices)
|
77 |
+
frame_indices_new = []
|
78 |
+
if disturb_type == 'exchange':
|
79 |
+
# 均等分成4个segments, 随机交换两个segment
|
80 |
+
seg_len = math.ceil(n_frames / 4)
|
81 |
+
seg_idxs = list(range(0, n_frames, seg_len))
|
82 |
+
target_idxs = random.sample(range(0, 4), 2)
|
83 |
+
seg_idxs[target_idxs[0]], seg_idxs[target_idxs[1]] = seg_idxs[target_idxs[1]], seg_idxs[target_idxs[0]]
|
84 |
+
for idx in seg_idxs:
|
85 |
+
frame_indices_new += frame_indices[idx: idx+seg_len]
|
86 |
+
elif disturb_type == 'crop':
|
87 |
+
# 随机截取出3/4时长,再采均匀n_frames帧
|
88 |
+
crop_len = math.ceil(n_frames / 4)
|
89 |
+
idx_s = random.choice(range(0, crop_len+1))
|
90 |
+
idx_e = n_frames - 1 - (crop_len - idx_s)
|
91 |
+
frame_indices_new = np.linspace(frame_indices[idx_s], frame_indices[idx_e], n_frames, dtype=int).tolist()
|
92 |
+
elif disturb_type == 'reverse':
|
93 |
+
# 随机选择长度为[1/2, 1]时长的片段进行顺序颠倒
|
94 |
+
reverse_len = math.ceil(random.uniform(0.5,1) * n_frames)
|
95 |
+
idx_s = random.choice(range(0, n_frames-reverse_len+1))
|
96 |
+
idx_e = idx_s + reverse_len - 1
|
97 |
+
frame_indices_new = frame_indices[:idx_s] + list(reversed(frame_indices[idx_s: idx_e+1])) + frame_indices[idx_e+1:]
|
98 |
+
elif disturb_type == 'discard':
|
99 |
+
# 随机丢弃一半帧
|
100 |
+
frame_indices_new = random.sample(frame_indices, n_frames//2)
|
101 |
+
frame_indices_new.sort()
|
102 |
+
return disturb_type, frame_indices_new
|
103 |
+
|
104 |
+
@func_set_timeout(60)
|
105 |
+
def _download_file(path):
|
106 |
+
if path.startswith("hdfs"):
|
107 |
+
local_path = os.path.join(tempfile.gettempdir(), f'{uuid.uuid4()}_' + os.path.basename(path))
|
108 |
+
|
109 |
+
fs = pf.HadoopFileSystem.from_uri(uri="hdfs://harunava")
|
110 |
+
hdfs_file = fs.open_input_file(path)
|
111 |
+
file_size = hdfs_file.size()
|
112 |
+
if file_size > 1024 * 1024 * 1024: # 1G
|
113 |
+
os.system(f"hadoop fs -get --ct 8 -c 512 '{path}' '{local_path}' > /dev/null 2>&1")
|
114 |
+
elif file_size > 1024 * 1024 * 100: # 100M
|
115 |
+
os.system(f"hadoop fs -get '{path}' '{local_path}' > /dev/null 2>&1")
|
116 |
+
else:
|
117 |
+
local_fs = pf.LocalFileSystem()
|
118 |
+
with local_fs.open_output_stream(local_path) as local_file:
|
119 |
+
while True:
|
120 |
+
chunk = hdfs_file.read(1024 * 1024 * 100) # Reading 1MB chunks, you can adjust this as needed
|
121 |
+
if not chunk:
|
122 |
+
break
|
123 |
+
local_file.write(chunk)
|
124 |
+
else:
|
125 |
+
local_path = path
|
126 |
+
|
127 |
+
if not os.path.exists(local_path):
|
128 |
+
raise FileNotFoundError(f'{local_path}')
|
129 |
+
|
130 |
+
return local_path
|
131 |
+
|
132 |
+
def download_file(path):
|
133 |
+
try:
|
134 |
+
# with timer(f'Download {path}'):
|
135 |
+
return _download_file(path)
|
136 |
+
except func_timeout.exceptions.FunctionTimedOut as e:
|
137 |
+
raise ValueError(e)
|
138 |
+
|
139 |
+
class VideoReader:
|
140 |
+
def __init__(self, path: str) -> None:
|
141 |
+
self.path = path
|
142 |
+
self.local_path = self.preprocess()
|
143 |
+
self.vr = decord.VideoReader(self.local_path, num_threads=1, ctx=decord.cpu(0), fault_tol=1)
|
144 |
+
self.vr.seek(0)
|
145 |
+
self._length = len(self.vr)
|
146 |
+
self._fps = self.vr.get_avg_fps()
|
147 |
+
|
148 |
+
@property
|
149 |
+
def length(self):
|
150 |
+
return self._length
|
151 |
+
|
152 |
+
@property
|
153 |
+
def fps(self):
|
154 |
+
return self._fps
|
155 |
+
|
156 |
+
def sample(self, frame_indices) -> List[Image.Image]:
|
157 |
+
frames = self.vr.get_batch(frame_indices).asnumpy()
|
158 |
+
frames = [Image.fromarray(f).convert('RGB') for f in frames]
|
159 |
+
return frames
|
160 |
+
|
161 |
+
def preprocess(self):
|
162 |
+
return download_file(self.path)
|
163 |
+
|
164 |
+
def postprocess(self):
|
165 |
+
if self.path.startswith("hdfs"):
|
166 |
+
os.remove(self.local_path)
|
167 |
+
|
168 |
+
class ImageSeqReader:
|
169 |
+
def __init__(self, path: List[str]) -> None:
|
170 |
+
self.path = path
|
171 |
+
self.local_path = self.preprocess()
|
172 |
+
self._length = len(self.local_path)
|
173 |
+
self._fps = None
|
174 |
+
|
175 |
+
@property
|
176 |
+
def length(self):
|
177 |
+
return self._length
|
178 |
+
|
179 |
+
@property
|
180 |
+
def fps(self):
|
181 |
+
return self._fps
|
182 |
+
|
183 |
+
def sample(self, frame_indices):
|
184 |
+
return [read_image(self.local_path[i]) for i in frame_indices]
|
185 |
+
|
186 |
+
def preprocess(self):
|
187 |
+
local_paths = []
|
188 |
+
for p in self.path:
|
189 |
+
local_paths.append(p)
|
190 |
+
return local_paths
|
191 |
+
|
192 |
+
def postprocess(self):
|
193 |
+
pass
|
194 |
+
|
195 |
+
class GIFReader:
|
196 |
+
def __init__(self, path: str) -> None:
|
197 |
+
self.path = path
|
198 |
+
self.local_path = self.preprocess()
|
199 |
+
self.gif = Image.open(self.local_path)
|
200 |
+
self._length = self.gif.n_frames
|
201 |
+
duration = self.gif.info.get('duration', 0) / 1000 # 转换为秒
|
202 |
+
if duration > 0:
|
203 |
+
self._fps = 1 / duration
|
204 |
+
else:
|
205 |
+
self._fps = None
|
206 |
+
|
207 |
+
@property
|
208 |
+
def length(self):
|
209 |
+
return self._length
|
210 |
+
|
211 |
+
@property
|
212 |
+
def fps(self):
|
213 |
+
return self._fps
|
214 |
+
|
215 |
+
def sample(self, frame_indices):
|
216 |
+
frames = []
|
217 |
+
i = 0
|
218 |
+
for frame in ImageSequence.Iterator(self.gif):
|
219 |
+
if i in frame_indices:
|
220 |
+
frames.append(frame.convert('RGB'))
|
221 |
+
i += 1
|
222 |
+
return frames
|
223 |
+
|
224 |
+
def preprocess(self):
|
225 |
+
return download_file(self.path)
|
226 |
+
|
227 |
+
def postprocess(self):
|
228 |
+
if self.path.startswith("hdfs"):
|
229 |
+
os.remove(self.local_path)
|
230 |
+
|
231 |
+
def check_frame_indices(frame_indices, total_frames, video_path):
|
232 |
+
if frame_indices[-1] == total_frames:
|
233 |
+
frame_indices[-1] = total_frames - 1
|
234 |
+
|
235 |
+
valid_frame_indices = [i for i in frame_indices if i >= 0 and i < total_frames]
|
236 |
+
|
237 |
+
if len(valid_frame_indices) != len(frame_indices):
|
238 |
+
print(f'[Error] frame out of index. video_path={video_path}, frame_indices={frame_indices}, total_frames={total_frames}', flush=True)
|
239 |
+
|
240 |
+
return valid_frame_indices
|
241 |
+
|
242 |
+
|
243 |
+
def sample_video(
|
244 |
+
video_path: Union[str, List[str]],
|
245 |
+
frame_indices: List[int] = None,
|
246 |
+
start_frame:int=None,
|
247 |
+
end_frame:int=None,
|
248 |
+
n_frames:int = None,
|
249 |
+
time_indices: List[float] = None,
|
250 |
+
start_time:int=None,
|
251 |
+
end_time:int=None,
|
252 |
+
sampling_fps:float=None,
|
253 |
+
mask_boxes=None,
|
254 |
+
is_training:bool=False,
|
255 |
+
video_sampling_strategy={'video_sampler_version': 'v1'},
|
256 |
+
return_frame_ids: bool=False,
|
257 |
+
) -> List[Image.Image]:
|
258 |
+
|
259 |
+
do_frame_disturb = video_sampling_strategy.get('do_frame_disturb', False)
|
260 |
+
|
261 |
+
if isinstance(video_path, str):
|
262 |
+
if video_path.endswith('.gif'):
|
263 |
+
reader = GIFReader(video_path)
|
264 |
+
else:
|
265 |
+
reader = VideoReader(video_path)
|
266 |
+
else:
|
267 |
+
reader = ImageSeqReader(video_path)
|
268 |
+
|
269 |
+
total_frames = reader.length
|
270 |
+
fps = reader.fps
|
271 |
+
|
272 |
+
if sampling_fps is not None:
|
273 |
+
frame_indices = list(range(0, total_frames, round(fps / sampling_fps)))
|
274 |
+
if len(frame_indices) > n_frames:
|
275 |
+
frame_indices = None
|
276 |
+
|
277 |
+
if time_indices is not None:
|
278 |
+
frame_indices = [round(float(i) * fps) for i in time_indices]
|
279 |
+
|
280 |
+
if start_time is not None and end_time is not None:
|
281 |
+
start_frame = round(start_time * fps)
|
282 |
+
end_frame = round(end_time * fps)
|
283 |
+
|
284 |
+
if frame_indices is None:
|
285 |
+
start_frame = 0 if start_frame is None else round(start_frame)
|
286 |
+
end_frame = total_frames - 1 if end_frame is None else round(end_frame)
|
287 |
+
|
288 |
+
if end_frame == total_frames:
|
289 |
+
end_frame -= 1
|
290 |
+
|
291 |
+
if video_sampling_strategy['video_sampler_version'] == 'v1':
|
292 |
+
# 均匀抽帧,必采样首尾帧。
|
293 |
+
frame_indices = _sample_frame_indices_v1(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
|
294 |
+
elif video_sampling_strategy['video_sampler_version'] == 'v2':
|
295 |
+
frame_indices = _sample_frame_indices_v2(end_frame - start_frame + 1, n_frames, is_training, video_sampling_strategy)
|
296 |
+
else:
|
297 |
+
raise ValueError(f"video_sampler_version={video_sampling_strategy['video_sampler_version']} must be 'v1' or 'v2'")
|
298 |
+
frame_indices = [i + start_frame for i in frame_indices]
|
299 |
+
|
300 |
+
frame_indices = check_frame_indices(frame_indices, total_frames, video_path)
|
301 |
+
|
302 |
+
if do_frame_disturb:
|
303 |
+
frame_disturb_type, frame_indices_new = conduct_disturb_frame(frame_indices)
|
304 |
+
frame_indices_raw = frame_indices[:]
|
305 |
+
frame_indices = frame_indices_new
|
306 |
+
|
307 |
+
frames = reader.sample(frame_indices)
|
308 |
+
if mask_boxes is not None:
|
309 |
+
frames = process_image_for_tiktok(frames, mask_boxes)
|
310 |
+
|
311 |
+
n = video_sampling_strategy.get('force_frames_n_divisible', 1)
|
312 |
+
if n > 1 and len(frames) % n != 0:
|
313 |
+
new_n = n - len(frames) % n
|
314 |
+
frames.extend([Image.new(mode='RGB', size=frames[-1].size) for _ in range(new_n)])
|
315 |
+
|
316 |
+
reader.postprocess()
|
317 |
+
|
318 |
+
if do_frame_disturb:
|
319 |
+
return frames, {"frame_indices": frame_indices, "disturb_type": frame_disturb_type, "frame_indices_raw": frame_indices_raw}
|
320 |
+
if return_frame_ids:
|
321 |
+
return frames, frame_indices
|
322 |
+
return frames
|
323 |
+
|
324 |
+
|
325 |
+
|
326 |
+
def load_image_from_base64String(img_path):
|
327 |
+
img = base64.b64decode(open(img_path, "rb").read())
|
328 |
+
buf = io.BytesIO(img)
|
329 |
+
img = Image.open(buf)
|
330 |
+
return img
|
331 |
+
|
332 |
+
def read_image(image_path):
|
333 |
+
local_file = download_file(image_path)
|
334 |
+
|
335 |
+
if local_file.endswith('.dat'):
|
336 |
+
image = load_image_from_base64String(local_file)
|
337 |
+
else:
|
338 |
+
image = Image.open(local_file).convert('RGB')
|
339 |
+
if image_path.startswith("hdfs"):
|
340 |
+
os.remove(local_file)
|
341 |
+
return image
|
342 |
+
|
343 |
+
|
344 |
+
def adjust_bbox(text, frame):
|
345 |
+
|
346 |
+
width, height = frame.size
|
347 |
+
new_text = []
|
348 |
+
start_idx = 0
|
349 |
+
for match in re.finditer(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', text):
|
350 |
+
coordinate_matches = re.findall(r"([0-9.]+)", match.group(0))
|
351 |
+
xys = [float(coord) for coord in coordinate_matches]
|
352 |
+
|
353 |
+
new_xys = []
|
354 |
+
for i in range(len(xys)):
|
355 |
+
p = xys[i]
|
356 |
+
|
357 |
+
if width == height:
|
358 |
+
pass
|
359 |
+
|
360 |
+
if width > height and i % 2 != 0:
|
361 |
+
p = xys[i] * height
|
362 |
+
p += (width - height) // 2
|
363 |
+
p = round(p / width, 2)
|
364 |
+
|
365 |
+
if height > width and i % 2 == 0:
|
366 |
+
p = xys[i] * width
|
367 |
+
p += (height - width) // 2
|
368 |
+
p = round(p / height, 2)
|
369 |
+
|
370 |
+
new_xys.append(p)
|
371 |
+
|
372 |
+
new_text.append(text[start_idx: match.span()[0]])
|
373 |
+
new_text.append(str(new_xys))
|
374 |
+
start_idx = match.span()[1]
|
375 |
+
new_text.append(text[start_idx: ])
|
376 |
+
text = ''.join(new_text)
|
377 |
+
|
378 |
+
|
379 |
+
return text
|
380 |
+
|
381 |
+
def bbox_area(vertices, convert_format = True):
|
382 |
+
if convert_format:
|
383 |
+
vertices = list(zip(vertices[::2], vertices[1::2]))
|
384 |
+
x0, y0 = vertices[0]
|
385 |
+
x1, y1 = vertices[1]
|
386 |
+
return abs((x1 - x0) * (y1 - y0))
|
387 |
+
|
388 |
+
def polygon_area(vertices, convert_format = True):
|
389 |
+
if convert_format:
|
390 |
+
vertices = list(zip(vertices[::2], vertices[1::2]))
|
391 |
+
n = len(vertices) # 多边形顶点的数量
|
392 |
+
if n == 2:
|
393 |
+
return bbox_area(vertices, convert_format=False)
|
394 |
+
area = 0
|
395 |
+
for i in range(n):
|
396 |
+
x1, y1 = vertices[i]
|
397 |
+
x2, y2 = vertices[(i + 1) % n]
|
398 |
+
area += x1 * y2 - x2 * y1
|
399 |
+
return abs(area) / 2
|
400 |
+
|
401 |
+
def get_text_len(text_line):
|
402 |
+
l = 0
|
403 |
+
for c in text_line:
|
404 |
+
if '\u4e00' <= c <= '\u9fff':
|
405 |
+
l += 1
|
406 |
+
else:
|
407 |
+
l += 0.5
|
408 |
+
return l
|
409 |
+
|
410 |
+
def filter_ocr_polygon(response, area_threshold=0.0005):
|
411 |
+
try:
|
412 |
+
resp = json.loads(response)
|
413 |
+
except:
|
414 |
+
return response
|
415 |
+
new_resp = []
|
416 |
+
for coords, text_line in resp:
|
417 |
+
area = polygon_area(coords, convert_format=True)
|
418 |
+
text_len = get_text_len(text_line)
|
419 |
+
if text_len == 0:
|
420 |
+
continue
|
421 |
+
if area / text_len < area_threshold:
|
422 |
+
continue
|
423 |
+
new_resp.append([coords, text_line])
|
424 |
+
new_resp = json.dumps(new_resp, ensure_ascii=False)
|
425 |
+
|
426 |
+
return new_resp
|
427 |
+
|
428 |
+
def put_pred_to_data_dict(prediction, data_dict):
|
429 |
+
msg = data_dict['messages'][-1]
|
430 |
+
if msg['role'] == 'assistant':
|
431 |
+
msg['content'][-1]['text'] = prediction
|
432 |
+
else:
|
433 |
+
data_dict['messages'].append({
|
434 |
+
"role": "assistant",
|
435 |
+
"content": [{"type": "text", "text": prediction}]
|
436 |
+
})
|
437 |
+
|
438 |
+
def get_prompt_from_data_dict(data_dict):
|
439 |
+
prompt = ""
|
440 |
+
for msg in data_dict['messages']:
|
441 |
+
role = msg['role']
|
442 |
+
assert role in {'system', 'user', 'assistant'}
|
443 |
+
for content in msg['content']:
|
444 |
+
if content['type'] == 'text':
|
445 |
+
if content['text']:
|
446 |
+
prompt += f"[{role}]: {content['text']}"
|
447 |
+
elif content['type'] == 'image':
|
448 |
+
prompt += f"[{role}]: <image>"
|
449 |
+
elif content['type'] == 'video':
|
450 |
+
prompt += f"[{role}]: <video>"
|
451 |
+
prompt += '\n'
|
452 |
+
return prompt
|
dataset/custom_data_parsers/utils_visualize.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Dict, List, Optional
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
|
5 |
+
|
6 |
+
def scale_polygon(polygon, w, h):
|
7 |
+
new_polygon = []
|
8 |
+
for (x, y) in polygon:
|
9 |
+
new_polygon.append((x * w, y * h))
|
10 |
+
return new_polygon
|
11 |
+
|
12 |
+
def draw_polygon(image: Image.Image, points: List[List[int]], label: Optional[str] = None):
|
13 |
+
draw = ImageDraw.Draw(image)
|
14 |
+
if len(points) > 2:
|
15 |
+
draw.polygon(points, outline="red", width=3)
|
16 |
+
elif len(points) == 2:
|
17 |
+
draw.rectangle(points, outline="red", width=3)
|
18 |
+
else:
|
19 |
+
raise ValueError(f'points={points} only has one point!')
|
20 |
+
|
21 |
+
if label is not None:
|
22 |
+
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf', 20)
|
23 |
+
draw.text(points[0], label, font=font, fill=(0, 0, 255))
|
24 |
+
return image
|
25 |
+
|
26 |
+
def visualize_image_bbox(data_dict, image_processing_config, processor):
|
27 |
+
if image_processing_config.get('has_coordinates') != True:
|
28 |
+
return
|
29 |
+
|
30 |
+
messages = data_dict['messages']
|
31 |
+
|
32 |
+
polygons = []
|
33 |
+
first_image_content = None
|
34 |
+
|
35 |
+
for msg in messages:
|
36 |
+
for content in msg['content']:
|
37 |
+
if content['type'] == 'text':
|
38 |
+
for match in re.finditer(r'\[(\d+(\.\d+)?,\s*)+\d+(\.\d+)?\]', content["text"]):
|
39 |
+
coordinate_matches = re.findall(r"([0-9.]+)", match.group(0))
|
40 |
+
coords = [float(coord) for coord in coordinate_matches]
|
41 |
+
polygons.append(list(zip(coords[::2], coords[1::2])))
|
42 |
+
elif first_image_content is None and content['type'] == 'image':
|
43 |
+
first_image_content = content
|
44 |
+
|
45 |
+
first_image = first_image_content['image']
|
46 |
+
first_image = processor.preprocess_image(first_image, image_processing_config)
|
47 |
+
w, h = first_image.size
|
48 |
+
|
49 |
+
if len(polygons) > 0:
|
50 |
+
for i, polygon in enumerate(polygons):
|
51 |
+
polygon = scale_polygon(polygon, w, h)
|
52 |
+
first_image = draw_polygon(first_image, polygon, label=str(i))
|
53 |
+
|
54 |
+
first_image_content['image'] = first_image
|
dataset/custom_data_parsers/video_permutation_parser.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List
|
2 |
+
import random
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
|
5 |
+
from .utils import sample_video
|
6 |
+
|
7 |
+
|
8 |
+
class VideoPermutationParser:
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
n_frames=8,
|
12 |
+
is_training=True,
|
13 |
+
frame_nums = list(range(8, 25)),
|
14 |
+
video_sampling_strategy={},
|
15 |
+
):
|
16 |
+
self.n_frames = n_frames
|
17 |
+
self.is_training = is_training
|
18 |
+
self.frame_nums = frame_nums
|
19 |
+
self.video_sampling_strategy = video_sampling_strategy
|
20 |
+
# fmt: off
|
21 |
+
self.data_temp = {
|
22 |
+
"text": [{
|
23 |
+
"prompt": "<video>",
|
24 |
+
"response": ""
|
25 |
+
}],
|
26 |
+
"video": [{
|
27 |
+
"video_file": {
|
28 |
+
"yg": "/mnt/bn/videonasyg/videos/webvid_10M_download/011851_011900/1047443473.mp4",
|
29 |
+
"lq": "/mnt/bn/llmdatalq/jiangnan/video_generation/webvid_10M_download/20230609/videos/011851_011900/1047443473.mp4"
|
30 |
+
},
|
31 |
+
"frame_indices": [0, 85, 171, 256, 342, 427, 513, 598]
|
32 |
+
}],
|
33 |
+
}
|
34 |
+
# fmt: on
|
35 |
+
|
36 |
+
def check_format(self, data_dict: Dict):
|
37 |
+
pass
|
38 |
+
# for k in self.data_temp.keys():
|
39 |
+
# assert k in data_dict
|
40 |
+
|
41 |
+
def transform(self, data_dict: Dict, image_processing_config: Dict = None) -> Dict:
|
42 |
+
self.check_format(data_dict)
|
43 |
+
|
44 |
+
frames = self.load_video_item(data_dict['video'][0])
|
45 |
+
|
46 |
+
# frames = self.add_text_to_frames(frames) # for debug
|
47 |
+
|
48 |
+
idxs = list(range(1, len(frames) + 1))
|
49 |
+
random.shuffle(idxs)
|
50 |
+
|
51 |
+
prefix_len = int(3/8*len(idxs))
|
52 |
+
|
53 |
+
shuffled_frames = [frames[i-1] for i in idxs]
|
54 |
+
|
55 |
+
prompt = f'Output the correct chronological order of scrambled video frames. The order of the first {prefix_len} ones are:\n'
|
56 |
+
prompt += '\n'.join([str(i) for i in idxs[: prefix_len]]) + '\nOutput the order of the following frames:'
|
57 |
+
response = '\n'.join([str(i) for i in idxs[prefix_len: ]])
|
58 |
+
|
59 |
+
messages = [
|
60 |
+
{
|
61 |
+
"role": "user",
|
62 |
+
"content": [
|
63 |
+
{"type": "video", "video": shuffled_frames},
|
64 |
+
{"type": "text", "text": prompt},
|
65 |
+
]
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"role": "assistant",
|
69 |
+
"content": [
|
70 |
+
{"type": "text", "text": response}
|
71 |
+
]
|
72 |
+
}
|
73 |
+
]
|
74 |
+
|
75 |
+
return messages
|
76 |
+
|
77 |
+
|
78 |
+
def load_video_item(self, video_item) -> List[Image.Image]:
|
79 |
+
"""
|
80 |
+
video_item:
|
81 |
+
{"video_file": "/path/to/video", "n_frames": 8}
|
82 |
+
{"video_file": "/path/to/video", "frame_indices": [0, 1, 2], "n_frames": 3}
|
83 |
+
{"video_file": "/path/to/video", "start_frame": 0, "end_frame": 100, "n_frames": 8}
|
84 |
+
{"video_file": "/path/to/video", "time_indices": [0, 1, 2], "n_frames": 3}
|
85 |
+
{"video_file": "/path/to/video", "start_time": 0, "end_time": 100, "n_frames": 8}
|
86 |
+
{"image_file": ["/path/to/image"], "frame_indices": [0, 1, 2], "n_frames": 3}
|
87 |
+
"""
|
88 |
+
|
89 |
+
# check format
|
90 |
+
if ("image_file" not in video_item) and ("video_file" not in video_item):
|
91 |
+
raise KeyError(f"Key 'image_file' or 'video_file' not found in video_item")
|
92 |
+
|
93 |
+
video_path = video_item.get('video_file', video_item.get('image_file'))
|
94 |
+
n_frames = video_item.get('n_frames', None)
|
95 |
+
frame_indices = video_item.get('frame_indices', None)
|
96 |
+
start_frame = video_item.get('start_frame', None)
|
97 |
+
end_frame = video_item.get('end_frame', None)
|
98 |
+
time_indices = video_item.get('time_indices', None)
|
99 |
+
start_time = video_item.get('start_time', None)
|
100 |
+
end_time = video_item.get('end_time', None)
|
101 |
+
mask_boxes = video_item.get('mask_boxes', None)
|
102 |
+
|
103 |
+
n_frames = random.choice(self.frame_nums)
|
104 |
+
n = self.video_sampling_strategy.get('force_frames_n_divisible', 1)
|
105 |
+
if n > 1 and n_frames % n != 0:
|
106 |
+
n_frames += n - n_frames % n
|
107 |
+
|
108 |
+
frames, frame_indices = sample_video(
|
109 |
+
video_path=video_path,
|
110 |
+
frame_indices=frame_indices,
|
111 |
+
start_frame=start_frame,
|
112 |
+
end_frame=end_frame,
|
113 |
+
n_frames=n_frames,
|
114 |
+
time_indices=time_indices,
|
115 |
+
start_time=start_time,
|
116 |
+
end_time=end_time,
|
117 |
+
mask_boxes=mask_boxes,
|
118 |
+
is_training=self.is_training,
|
119 |
+
video_sampling_strategy=self.video_sampling_strategy,
|
120 |
+
return_frame_ids=True,
|
121 |
+
)
|
122 |
+
return frames
|
123 |
+
|
124 |
+
|
125 |
+
def add_text_to_frames(self, frames: List[Image.Image]):
|
126 |
+
new_frames = []
|
127 |
+
for i, image in enumerate(frames):
|
128 |
+
draw = ImageDraw.Draw(image)
|
129 |
+
|
130 |
+
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans-Bold.ttf', 100)
|
131 |
+
text_position = (50, 50)
|
132 |
+
text_content = f'{i+1}'
|
133 |
+
text_color = (255, 0, 0)
|
134 |
+
draw.text(text_position, text_content, font=font, fill=text_color)
|
135 |
+
new_frames.append(image)
|
136 |
+
return new_frames
|
137 |
+
|
dataset/mm_dataset.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
# Copyright (2024) Bytedance Ltd. and/or its affiliates
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
from dataset.utils import get_visual_type, sample_frame_indices
|
15 |
-
from .processor import Processor
|
16 |
-
from tools.rw_utils import read_jsonlines
|
17 |
-
|
18 |
-
class MMDataset(object):
|
19 |
-
def __init__(self, ann_path="", anns=None, processor:Processor=None):
|
20 |
-
self.processor = processor
|
21 |
-
if anns is None:
|
22 |
-
self.anns = []
|
23 |
-
if isinstance(ann_path, str):
|
24 |
-
ann_path = [ann_path]
|
25 |
-
for path in ann_path:
|
26 |
-
self.anns.extend(read_jsonlines(path))
|
27 |
-
else:
|
28 |
-
self.anns = anns
|
29 |
-
|
30 |
-
def __len__(self):
|
31 |
-
return len(self.anns)
|
32 |
-
|
33 |
-
def __getitem__(self, index):
|
34 |
-
try:
|
35 |
-
ann = self.anns[index]
|
36 |
-
|
37 |
-
prompt = ann['text']['prompt']
|
38 |
-
|
39 |
-
video_file = ann['video_file']
|
40 |
-
visual_files = []
|
41 |
-
start_time = ann.get("start_time", 0)
|
42 |
-
end_time = ann.get("end_time", -1)
|
43 |
-
if isinstance(video_file, list):
|
44 |
-
# This is for MVBench/Episodic Reasoning
|
45 |
-
# The video_file are a list of sorted frames extract from the target video
|
46 |
-
for img_file in video_file:
|
47 |
-
if get_visual_type(img_file) == 'image':
|
48 |
-
visual_files.append(img_file)
|
49 |
-
frame_indices = sample_frame_indices(start_frame=0, total_frames=len(visual_files), n_frames=min(len(visual_files), self.processor.max_n_frames))
|
50 |
-
visual_files = [v for i,v in enumerate(visual_files) if i in frame_indices]
|
51 |
-
else:
|
52 |
-
if get_visual_type(video_file) in ['image', 'video', 'gif']:
|
53 |
-
visual_files.append(video_file)
|
54 |
-
assert len(visual_files) >= 0, f"Failed to load valid visual file from anns[{index}]!"
|
55 |
-
images = []
|
56 |
-
for v_f in visual_files:
|
57 |
-
images.extend(self.processor.load_images(v_f, start_time=start_time, end_time=end_time))
|
58 |
-
model_inputs = self.processor(prompt, images=images, edit_prompt=True, return_prompt=True)
|
59 |
-
except Exception as e:
|
60 |
-
print(f"Load data error: {e}")
|
61 |
-
return ann, None
|
62 |
-
return ann, model_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset/processor.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
# Copyright (2024) Bytedance Ltd. and/or its affiliates
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
from PIL import Image
|
15 |
-
from typing import List
|
16 |
-
import torch
|
17 |
-
from transformers import DataCollatorForSeq2Seq
|
18 |
-
from transformers.models.llava import LlavaProcessor
|
19 |
-
import re
|
20 |
-
import os
|
21 |
-
|
22 |
-
from .utils import sample_image, sample_video, sample_gif, get_visual_type
|
23 |
-
|
24 |
-
HF_TOKEN = os.environ.get('HF_TOKEN', '')
|
25 |
-
|
26 |
-
ext2sampler = {
|
27 |
-
'image': sample_image,
|
28 |
-
'gif': sample_gif,
|
29 |
-
'video': sample_video
|
30 |
-
}
|
31 |
-
|
32 |
-
class CustomImageProcessor:
|
33 |
-
def __init__(self, processor) -> None:
|
34 |
-
self.processor = processor
|
35 |
-
|
36 |
-
def __call__(self, images: List[Image.Image], do_padding=False) -> torch.Tensor:
|
37 |
-
if do_padding:
|
38 |
-
images = [self.expand2square(
|
39 |
-
img,
|
40 |
-
tuple(int(x * 255) for x in self.processor.image_processor.image_mean)
|
41 |
-
) for img in images]
|
42 |
-
else:
|
43 |
-
images = [self.resize2square(img) for img in images]
|
44 |
-
images_pixel = self.processor(text="", images=images, return_tensors="pt")['pixel_values']
|
45 |
-
return images_pixel # [num_images, 3, 336, 336]
|
46 |
-
|
47 |
-
def expand2square(self, pil_img, background_color):
|
48 |
-
width, height = pil_img.size
|
49 |
-
if width == height:
|
50 |
-
return pil_img
|
51 |
-
elif width > height:
|
52 |
-
result = Image.new(pil_img.mode, (width, width), background_color)
|
53 |
-
result.paste(pil_img, (0, (width - height) // 2))
|
54 |
-
return result
|
55 |
-
else:
|
56 |
-
result = Image.new(pil_img.mode, (height, height), background_color)
|
57 |
-
result.paste(pil_img, ((height - width) // 2, 0))
|
58 |
-
return result
|
59 |
-
|
60 |
-
def resize2square(self, pil_img: Image.Image):
|
61 |
-
width, height = pil_img.size
|
62 |
-
pil_img = pil_img.resize((max(width, height), max(width, height)))
|
63 |
-
return pil_img
|
64 |
-
|
65 |
-
class Processor(object):
|
66 |
-
def __init__(
|
67 |
-
self,
|
68 |
-
model_name_or_path,
|
69 |
-
max_n_frames=8,
|
70 |
-
max_seq_len=None,
|
71 |
-
add_sep=False,
|
72 |
-
do_image_padding=False,
|
73 |
-
):
|
74 |
-
self.max_n_frames = max_n_frames
|
75 |
-
self.max_seq_len = max_seq_len,
|
76 |
-
self.add_sep = add_sep
|
77 |
-
self.do_image_padding = do_image_padding
|
78 |
-
if not self.do_image_padding:
|
79 |
-
print(f"### do_image_padding is set as False, images will be resized directly!")
|
80 |
-
|
81 |
-
self.setup(model_name_or_path)
|
82 |
-
|
83 |
-
|
84 |
-
def setup(self, model_name_or_path):
|
85 |
-
sub_processor = LlavaProcessor.from_pretrained(
|
86 |
-
model_name_or_path,
|
87 |
-
padding_side='left',
|
88 |
-
trust_remote_code=True,
|
89 |
-
token=HF_TOKEN,
|
90 |
-
)
|
91 |
-
self.processor = CustomImageProcessor(sub_processor)
|
92 |
-
self.tokenizer = sub_processor.tokenizer
|
93 |
-
# self.pad_collator = DataCollatorForSeq2Seq(self.tokenizer, padding='longest')
|
94 |
-
self.sep_id = self.tokenizer.sep_token_id
|
95 |
-
self.pad_id = self.tokenizer.pad_token_id
|
96 |
-
self.eos_id = self.tokenizer.eos_token_id
|
97 |
-
|
98 |
-
if self.sep_id is None:
|
99 |
-
self.add_sep = False
|
100 |
-
if not self.max_seq_len:
|
101 |
-
self.max_seq_len = self.tokenizer.model_max_length
|
102 |
-
|
103 |
-
def process_prompt(self, prompt, images: List[Image.Image]=None):
|
104 |
-
if not images:
|
105 |
-
prompt = prompt.replace("<image>", "").replace("<video>", "")
|
106 |
-
elif images is not None:
|
107 |
-
prompt = prompt.replace("<video>", "<image>"*len(images))
|
108 |
-
image_token_num = len(re.findall('<image>', prompt, re.S))
|
109 |
-
if image_token_num == 0:
|
110 |
-
prompt_parts = re.findall(r'USER:(.*)ASSISTANT:(.*)', prompt, re.S)
|
111 |
-
if prompt_parts and len(prompt_parts) == 2:
|
112 |
-
p1, p2 = prompt_parts
|
113 |
-
else:
|
114 |
-
p1 = prompt
|
115 |
-
p2 = ''
|
116 |
-
prompt = f"USER: {'<image>'*len(images) + ' ' + p1.strip()} ASSISTANT: {p2.strip()}"
|
117 |
-
assert image_token_num == len(images)
|
118 |
-
|
119 |
-
if not re.findall(r'USER:(.*)ASSISTANT:(.*)', prompt, re.S):
|
120 |
-
prompt = f'USER: {prompt} ASSISTANT: '
|
121 |
-
return prompt
|
122 |
-
|
123 |
-
def select_frames_sampler(self, visual_data_path):
|
124 |
-
visual_type = get_visual_type(visual_data_path)
|
125 |
-
if visual_type in ext2sampler:
|
126 |
-
return ext2sampler[visual_type]
|
127 |
-
else:
|
128 |
-
raise ValueError(f"Unsupported data format: {visual_data_path}")
|
129 |
-
|
130 |
-
def load_images(self, visual_data_path, n_frames=None, start_time=0, end_time=-1):
|
131 |
-
sampler = self.select_frames_sampler(visual_data_path)
|
132 |
-
return sampler(visual_data_path, n_frames=min(n_frames, self.max_n_frames) if n_frames else self.max_n_frames, start_time=start_time, end_time=end_time)
|
133 |
-
|
134 |
-
def get_pixel_values(self, images):
|
135 |
-
if images is not None and len(images) > 0:
|
136 |
-
pixel_values = self.processor(images=images, do_padding=self.do_image_padding)
|
137 |
-
else:
|
138 |
-
pixel_values = None
|
139 |
-
return pixel_values
|
140 |
-
|
141 |
-
def get_text_inputs(self, text):
|
142 |
-
prompt_ids = self.tokenizer.encode(text, add_special_tokens=True) # will add <s>
|
143 |
-
if self.add_sep:
|
144 |
-
prompt_ids = prompt_ids + [self.sep_id]
|
145 |
-
prompt_ids = torch.tensor(prompt_ids, dtype=torch.long).unsqueeze(dim=0)
|
146 |
-
return prompt_ids
|
147 |
-
|
148 |
-
def get_inputs(self, prompt, visual_data_file=None, images=None, n_frames=None, edit_prompt=False, return_prompt=False):
|
149 |
-
if images is None:
|
150 |
-
images = self.load_images(visual_data_file, n_frames) if visual_data_file else None
|
151 |
-
if edit_prompt:
|
152 |
-
prompt = self.process_prompt(prompt, images)
|
153 |
-
text_inputs = self.get_text_inputs(prompt)
|
154 |
-
pixel_values = self.get_pixel_values(images)
|
155 |
-
inputs = {
|
156 |
-
"input_ids": text_inputs,
|
157 |
-
"pixel_values": pixel_values
|
158 |
-
}
|
159 |
-
if return_prompt:
|
160 |
-
inputs['prompt'] = prompt
|
161 |
-
return inputs
|
162 |
-
|
163 |
-
def __call__(self, prompt, visual_data_file=None, images=None, n_frames=None, edit_prompt=False, return_prompt=False):
|
164 |
-
return self.get_inputs(prompt, visual_data_file, images, n_frames, edit_prompt, return_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset/tarsier_datamodule.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Datamodule for Llava Pretraining and Finetuning"""
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import re
|
7 |
+
import tempfile
|
8 |
+
from typing import Dict, List, Union, Tuple
|
9 |
+
import traceback
|
10 |
+
import json
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from transformers import DataCollatorForSeq2Seq
|
15 |
+
|
16 |
+
from tools.rw_utils import read_jsonlines
|
17 |
+
from torch.utils.data import Dataset, DataLoader
|
18 |
+
|
19 |
+
np_str_obj_array_pattern = re.compile(r"[SaUO]")
|
20 |
+
|
21 |
+
default_collate_err_msg_format = (
|
22 |
+
"default_collate: batch must contain tensors, numpy arrays, numbers, "
|
23 |
+
"dicts or lists; found {}"
|
24 |
+
)
|
25 |
+
|
26 |
+
from .custom_data_parsers.standard_vision_parser import VisionParser
|
27 |
+
from .custom_data_parsers.object_tracking_parser import ObjectTrackingParser
|
28 |
+
from .custom_data_parsers.multi_images_parser import MultiImagesParser
|
29 |
+
from .custom_data_parsers.video_permutation_parser import VideoPermutationParser
|
30 |
+
from .custom_data_parsers.utils_visualize import visualize_image_bbox
|
31 |
+
|
32 |
+
from .tarsier_processor import TarsierProcessor
|
33 |
+
|
34 |
+
from tools.rw_utils import NumpyArrayEncoder
|
35 |
+
from .utils import DictToObject
|
36 |
+
import os
|
37 |
+
|
38 |
+
HF_TOKEN = os.environ.get('HF_TOKEN', '')
|
39 |
+
|
40 |
+
class TarsierDataProcessor:
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
processor: TarsierProcessor,
|
44 |
+
n_frames: Union[int, list],
|
45 |
+
max_n_frames=256,
|
46 |
+
max_pixels=int(1280 * 720 // 2),
|
47 |
+
min_pixels=0,
|
48 |
+
max_seq_len=None,
|
49 |
+
is_training=True, # 会影响:1. 训练和测试时采帧不同;2. 测试时忽略 response。
|
50 |
+
print_data_error=True,
|
51 |
+
do_image_padding=False,
|
52 |
+
do_image_crop=False,
|
53 |
+
do_image_resize=True,
|
54 |
+
video_sampling_strategy={},
|
55 |
+
prompt='',
|
56 |
+
train_task='sft',
|
57 |
+
**kwargs
|
58 |
+
):
|
59 |
+
self.kwargs = kwargs
|
60 |
+
|
61 |
+
self.processor = processor
|
62 |
+
self.pad_collator = DataCollatorForSeq2Seq(processor.tokenizer, padding='longest')
|
63 |
+
|
64 |
+
self.processor.max_seq_len = self.tokenizer.model_max_length if max_seq_len is None else max_seq_len
|
65 |
+
|
66 |
+
self.n_frames = n_frames
|
67 |
+
self.max_n_frames = max_n_frames
|
68 |
+
self.max_pixels = max_pixels
|
69 |
+
self.min_pixels = min_pixels
|
70 |
+
|
71 |
+
self.is_training = is_training
|
72 |
+
self.print_data_error = print_data_error
|
73 |
+
self.do_image_padding = do_image_padding
|
74 |
+
self.do_image_crop = do_image_crop
|
75 |
+
self.do_image_resize = do_image_resize
|
76 |
+
self.video_sampling_strategy = video_sampling_strategy
|
77 |
+
self.prompt = prompt
|
78 |
+
self.train_task = train_task
|
79 |
+
|
80 |
+
self.object_tracking_parser = ObjectTrackingParser(
|
81 |
+
n_frames=self.n_frames,
|
82 |
+
max_objects=4,
|
83 |
+
is_training=self.is_training,
|
84 |
+
)
|
85 |
+
self.multi_images_parser = MultiImagesParser(
|
86 |
+
n_frames=self.n_frames,
|
87 |
+
is_training=self.is_training,
|
88 |
+
)
|
89 |
+
self.video_permutation_parser = VideoPermutationParser(
|
90 |
+
n_frames=self.n_frames,
|
91 |
+
is_training=self.is_training,
|
92 |
+
video_sampling_strategy=self.video_sampling_strategy,
|
93 |
+
)
|
94 |
+
self.vision_parser = VisionParser(
|
95 |
+
n_frames=self.n_frames,
|
96 |
+
max_n_frames=self.max_n_frames,
|
97 |
+
is_training=self.is_training,
|
98 |
+
video_sampling_strategy=self.video_sampling_strategy
|
99 |
+
)
|
100 |
+
|
101 |
+
def select_parser(self, data_dict):
|
102 |
+
if data_dict.get('task', None) == 'video/object_tracking':
|
103 |
+
return self.object_tracking_parser
|
104 |
+
elif data_dict.get('task', None) == 'multi_images':
|
105 |
+
return self.multi_images_parser
|
106 |
+
elif data_dict.get('dataset', None) == 'video_permutation':
|
107 |
+
return self.video_permutation_parser
|
108 |
+
else:
|
109 |
+
return self.vision_parser
|
110 |
+
|
111 |
+
def parse_image_processing_config(self, data_dict):
|
112 |
+
image_processing_config=data_dict.get('image_processing_config', {})
|
113 |
+
|
114 |
+
do_padding = image_processing_config.get('do_padding', self.do_image_padding)
|
115 |
+
do_crop = image_processing_config.get('do_crop', self.do_image_crop)
|
116 |
+
do_resize = image_processing_config.get('do_resize', self.do_image_resize)
|
117 |
+
max_pixels = image_processing_config.get('max_pixels', self.max_pixels)
|
118 |
+
min_pixels = image_processing_config.get('min_pixels', self.min_pixels)
|
119 |
+
|
120 |
+
assert min_pixels <= max_pixels
|
121 |
+
|
122 |
+
image_processing_config['do_padding'] = do_padding
|
123 |
+
image_processing_config['do_crop'] = do_crop
|
124 |
+
image_processing_config['do_resize'] = do_resize
|
125 |
+
image_processing_config['max_pixels'] = max_pixels
|
126 |
+
image_processing_config['min_pixels'] = min_pixels
|
127 |
+
|
128 |
+
return image_processing_config
|
129 |
+
|
130 |
+
|
131 |
+
def _transform(self, raw_data_dict: Dict) -> Dict:
|
132 |
+
data_dict = json.loads(json.dumps(raw_data_dict, cls=NumpyArrayEncoder))
|
133 |
+
del raw_data_dict
|
134 |
+
|
135 |
+
if self.prompt:
|
136 |
+
for msg in data_dict['messages']:
|
137 |
+
if msg['role'] == 'user':
|
138 |
+
for content in msg['content']:
|
139 |
+
if content['type'] == 'text':
|
140 |
+
content['text'] = self.prompt
|
141 |
+
|
142 |
+
data_dict_copy = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))
|
143 |
+
|
144 |
+
image_processing_config = self.parse_image_processing_config(data_dict)
|
145 |
+
parser = self.select_parser(data_dict)
|
146 |
+
messages = parser.transform(data_dict, image_processing_config)
|
147 |
+
data_dict_copy['extra_info'] = data_dict.pop('extra_info', {})
|
148 |
+
|
149 |
+
# visualize_image_bbox(data_dict, image_processing_config, self.processor)
|
150 |
+
outputs = self.processor(messages, image_processing_config, is_training=self.is_training)
|
151 |
+
|
152 |
+
# if not self.is_training:
|
153 |
+
outputs['raw_data_dict'] = data_dict_copy
|
154 |
+
|
155 |
+
return [outputs]
|
156 |
+
|
157 |
+
def _split_chosen_rejected(self, data_dict: Dict):
|
158 |
+
chosen_data_dict = data_dict
|
159 |
+
rejected_data_dict = json.loads(json.dumps(data_dict, cls=NumpyArrayEncoder))
|
160 |
+
for msg in chosen_data_dict['messages']:
|
161 |
+
if msg['role'] == 'assistant':
|
162 |
+
for content in msg['content']:
|
163 |
+
if content['type'] == 'text':
|
164 |
+
content['text'] = content['chosen']
|
165 |
+
|
166 |
+
for msg in rejected_data_dict['messages']:
|
167 |
+
if msg['role'] == 'assistant':
|
168 |
+
for content in msg['content']:
|
169 |
+
if content['type'] == 'text':
|
170 |
+
content['text'] = content['rejected']
|
171 |
+
|
172 |
+
return chosen_data_dict, rejected_data_dict
|
173 |
+
|
174 |
+
def transform(self, data_dict: Dict) -> Dict:
|
175 |
+
try:
|
176 |
+
if self.train_task == 'dpo':
|
177 |
+
chosen_data_dict, rejected_data_dict = self._split_chosen_rejected(data_dict)
|
178 |
+
return self._transform(chosen_data_dict) + self._transform(rejected_data_dict)
|
179 |
+
return self._transform(data_dict)
|
180 |
+
except Exception as e:
|
181 |
+
if self.print_data_error:
|
182 |
+
print(traceback.format_exc())
|
183 |
+
print(f'Error occurs when processing: \n{data_dict}')
|
184 |
+
return []
|
185 |
+
|
186 |
+
def batch_transform(self, batch_data: List[Dict]) -> Dict:
|
187 |
+
model_inputs = {}
|
188 |
+
# if not self.is_training:
|
189 |
+
raw_data_dict = [d.pop('raw_data_dict') for d in batch_data]
|
190 |
+
model_inputs['raw_data_dict'] = raw_data_dict
|
191 |
+
|
192 |
+
batch_pixel_values = [d.pop('pixel_values') for d in batch_data if 'pixel_values' in d]
|
193 |
+
batch_image_grid_thw = [d.pop('image_grid_thw') for d in batch_data if 'image_grid_thw' in d]
|
194 |
+
if len(batch_pixel_values) == 0:
|
195 |
+
vision_placeholder = self.get_vision_placeholder()
|
196 |
+
batch_pixel_values = [vision_placeholder.get('pixel_values')]
|
197 |
+
batch_image_grid_thw = [vision_placeholder.get('image_grid_thw')] if 'image_grid_thw' in vision_placeholder else []
|
198 |
+
|
199 |
+
model_inputs['pixel_values'] = torch.cat(batch_pixel_values, dim=0)
|
200 |
+
if len(batch_image_grid_thw) > 0:
|
201 |
+
model_inputs['image_grid_thw'] = torch.cat(batch_image_grid_thw, dim=0)
|
202 |
+
|
203 |
+
batch_num_images = [d.pop('num_images') for d in batch_data]
|
204 |
+
model_inputs['num_images'] = torch.tensor(batch_num_images)
|
205 |
+
model_inputs.update(self.pad_collator(batch_data))
|
206 |
+
return model_inputs
|
207 |
+
|
208 |
+
def __call__(self, batch_data: Union[Dict, List[Dict]]) -> Dict:
|
209 |
+
if isinstance(batch_data, dict):
|
210 |
+
batch_data = [batch_data]
|
211 |
+
batch = [self.transform(d)[0] for d in batch_data]
|
212 |
+
return self.batch_transform(batch)
|
213 |
+
|
214 |
+
def get_vision_placeholder(self):
|
215 |
+
messages = [{"role": "user", "content": [{"type": "image", "image": Image.new(mode='RGB', size=(336, 336))}]}]
|
216 |
+
image_processing_config = self.parse_image_processing_config({})
|
217 |
+
return self.processor(messages, image_processing_config)
|
218 |
+
|
219 |
+
def get_text_placeholder(self):
|
220 |
+
messages = [
|
221 |
+
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]},
|
222 |
+
{"role": "assistant", "content": [{"type": "text", "text": "Thank you very much"}]},
|
223 |
+
]
|
224 |
+
image_processing_config = self.parse_image_processing_config({})
|
225 |
+
return self.processor(messages, image_processing_config)
|
226 |
+
|
227 |
+
def init_processor(processor: Union[TarsierProcessor, str]=None, config: Dict=None):
|
228 |
+
config = DictToObject(config) if isinstance(config, dict) else config
|
229 |
+
if isinstance(processor, str):
|
230 |
+
sub_processor = TarsierProcessor.from_pretrained(
|
231 |
+
processor,
|
232 |
+
padding_side='left',
|
233 |
+
trust_remote_code=True,
|
234 |
+
token=HF_TOKEN,
|
235 |
+
)
|
236 |
+
else:
|
237 |
+
sub_processor = processor
|
238 |
+
processor = TarsierDataProcessor(
|
239 |
+
processor=sub_processor,
|
240 |
+
n_frames=config.n_frames,
|
241 |
+
max_n_frames=config.max_n_frames,
|
242 |
+
max_pixels=config.max_pixels,
|
243 |
+
min_pixels=config.min_pixels,
|
244 |
+
max_seq_len=config.max_seq_len,
|
245 |
+
is_training=config.is_training,
|
246 |
+
print_data_error=config.print_data_error,
|
247 |
+
do_image_padding=config.do_image_padding,
|
248 |
+
do_image_crop=config.do_image_crop,
|
249 |
+
do_image_resize=config.do_image_resize,
|
250 |
+
video_sampling_strategy=config.video_sampling_strategy,
|
251 |
+
prompt=config.prompt,
|
252 |
+
train_task=config.train_task
|
253 |
+
)
|
254 |
+
return processor
|
255 |
+
|
256 |
+
class TarsierDataset(Dataset):
|
257 |
+
def __init__(self, ann_path="", anns=None, config: Dict=None, processor: Union[TarsierDataProcessor, TarsierProcessor, str]=None):
|
258 |
+
self.config = DictToObject(config) if isinstance(config, dict) else config
|
259 |
+
if not isinstance(processor, TarsierDataProcessor):
|
260 |
+
self.processor = init_processor(processor, config)
|
261 |
+
else:
|
262 |
+
self.processor = processor
|
263 |
+
if anns is None:
|
264 |
+
self.anns = []
|
265 |
+
if isinstance(ann_path, str):
|
266 |
+
ann_path = [ann_path]
|
267 |
+
for path in ann_path:
|
268 |
+
self.anns.extend(read_jsonlines(path))
|
269 |
+
else:
|
270 |
+
self.anns = anns
|
271 |
+
|
272 |
+
def __len__(self):
|
273 |
+
return len(self.anns)
|
274 |
+
|
275 |
+
def __getitem__(self, index):
|
276 |
+
if index < 0 or index >= len(self.anns):
|
277 |
+
raise IndexError("Index out of range")
|
278 |
+
try:
|
279 |
+
ann = self.anns[index]
|
280 |
+
model_inputs = self.processor(ann)
|
281 |
+
except Exception as e:
|
282 |
+
print(f"Load data error: {e}")
|
283 |
+
return ann, None
|
284 |
+
return ann, model_inputs
|
dataset/tarsier_processor.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from transformers.feature_extraction_utils import BatchFeature
|
7 |
+
from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
|
8 |
+
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
|
9 |
+
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
10 |
+
from transformers.utils import logging
|
11 |
+
from transformers import Qwen2VLImageProcessor
|
12 |
+
from transformers.models.qwen2_vl.image_processing_qwen2_vl import smart_resize
|
13 |
+
|
14 |
+
logger = logging.get_logger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
class TarsierProcessorKwargs(ProcessingKwargs, total=False):
|
18 |
+
_defaults = {
|
19 |
+
"text_kwargs": {},
|
20 |
+
"images_kwargs": {},
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
class TarsierProcessor(ProcessorMixin):
|
25 |
+
|
26 |
+
attributes = ["image_processor", "tokenizer"]
|
27 |
+
valid_kwargs = ["chat_template", "image_token", "patch_size", "merge_size", "temporal_patch_size", "max_seq_len"]
|
28 |
+
image_processor_class = "AutoImageProcessor"
|
29 |
+
tokenizer_class = "AutoTokenizer"
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
image_processor=None,
|
34 |
+
tokenizer=None,
|
35 |
+
chat_template=None,
|
36 |
+
image_token="<image>",
|
37 |
+
patch_size=None,
|
38 |
+
merge_size=1,
|
39 |
+
temporal_patch_size=1,
|
40 |
+
max_seq_len=8192,
|
41 |
+
**kwargs,
|
42 |
+
) -> None:
|
43 |
+
|
44 |
+
self.image_token = image_token
|
45 |
+
self.patch_size = patch_size
|
46 |
+
self.merge_size = merge_size
|
47 |
+
self.temporal_patch_size = temporal_patch_size
|
48 |
+
self.max_seq_len = max_seq_len
|
49 |
+
self.max_pixels_per_sample = 128 * 384 * 384
|
50 |
+
|
51 |
+
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
52 |
+
|
53 |
+
def __call__(
|
54 |
+
self,
|
55 |
+
messages,
|
56 |
+
image_processing_config=None,
|
57 |
+
is_training=True,
|
58 |
+
) -> torch.Tensor:
|
59 |
+
|
60 |
+
output_kwargs = self._merge_kwargs(
|
61 |
+
TarsierProcessorKwargs,
|
62 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
63 |
+
)
|
64 |
+
|
65 |
+
# 【图片处理】
|
66 |
+
pixel_values, image_grid_thw = [], []
|
67 |
+
num_images = 0
|
68 |
+
for msg in messages:
|
69 |
+
for content in msg['content']:
|
70 |
+
if content['type'] == 'image':
|
71 |
+
num_images += self.temporal_patch_size
|
72 |
+
elif content['type'] == 'video':
|
73 |
+
num_images += len(content['video'])
|
74 |
+
if num_images > 0 and self.max_pixels_per_sample // num_images < image_processing_config['max_pixels']:
|
75 |
+
image_processing_config['max_pixels'] = self.max_pixels_per_sample // num_images
|
76 |
+
image_processing_config['min_pixels'] = min(image_processing_config['min_pixels'], image_processing_config['max_pixels'])
|
77 |
+
|
78 |
+
for msg in messages:
|
79 |
+
for content in msg['content']:
|
80 |
+
if content['type'] == 'image':
|
81 |
+
content['image'] = self.preprocess_image(content['image'], image_processing_config)
|
82 |
+
content['image'] = self.image_processor(images = content['image'], **output_kwargs["images_kwargs"], return_tensors="pt")
|
83 |
+
content['num_vision_tokens'] = self.get_num_vision_tokens(content)
|
84 |
+
pixel_values.append(content['image']['pixel_values'])
|
85 |
+
if 'image_grid_thw' in content['image']:
|
86 |
+
image_grid_thw.extend(content['image']['image_grid_thw'])
|
87 |
+
elif content['type'] == 'video':
|
88 |
+
content['video'] = self.preprocess_image(content['video'], image_processing_config)
|
89 |
+
if isinstance(self.image_processor, Qwen2VLImageProcessor):
|
90 |
+
content['video'] = self.image_processor(images = None, videos = content['video'], **output_kwargs["images_kwargs"], return_tensors="pt")
|
91 |
+
pixel_values.append(content['video']['pixel_values_videos'])
|
92 |
+
else:
|
93 |
+
content['video'] = self.image_processor(images = content['video'], **output_kwargs["images_kwargs"], return_tensors="pt")
|
94 |
+
pixel_values.append(content['video']['pixel_values'])
|
95 |
+
|
96 |
+
if 'video_grid_thw' in content['video']:
|
97 |
+
image_grid_thw.extend(content['video']['video_grid_thw'])
|
98 |
+
content['num_vision_tokens'] = self.get_num_vision_tokens(content)
|
99 |
+
|
100 |
+
#【文本处理】
|
101 |
+
add_generation_prompt = (not is_training and messages[-1]['role'] != 'assistant')
|
102 |
+
strip_final_eos = (not is_training and messages[-1]['role'] == 'assistant')
|
103 |
+
text_inputs = self.tokenizer.apply_chat_template(
|
104 |
+
messages,
|
105 |
+
chat_template = self.chat_template,
|
106 |
+
tokenize=True,
|
107 |
+
tokenizer_kwargs = output_kwargs["text_kwargs"],
|
108 |
+
return_assistant_tokens_mask=True,
|
109 |
+
return_dict=True,
|
110 |
+
add_generation_prompt=add_generation_prompt,
|
111 |
+
strip_final_eos=strip_final_eos,
|
112 |
+
)
|
113 |
+
labels = [-100 if j == 0 else i for i, j in zip(text_inputs['input_ids'], text_inputs['assistant_masks'])]
|
114 |
+
labels = labels[:self.max_seq_len]
|
115 |
+
input_ids = text_inputs['input_ids'][:self.max_seq_len]
|
116 |
+
|
117 |
+
image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
|
118 |
+
if image_token_id in text_inputs['input_ids'][self.max_seq_len:]:
|
119 |
+
raise ValueError(f'Too long sequence! {len(text_inputs["input_ids"])}')
|
120 |
+
|
121 |
+
outputs = {
|
122 |
+
'input_ids': input_ids,
|
123 |
+
'labels': labels,
|
124 |
+
'num_images': num_images,
|
125 |
+
}
|
126 |
+
if len(pixel_values) > 0:
|
127 |
+
outputs['pixel_values'] = torch.cat(pixel_values, dim=0)
|
128 |
+
if len(image_grid_thw) > 0:
|
129 |
+
outputs['image_grid_thw'] = torch.stack(image_grid_thw)
|
130 |
+
return outputs
|
131 |
+
|
132 |
+
|
133 |
+
def preprocess_image(self, pil_img: Union[Image.Image, List[Image.Image]], image_processing_config):
|
134 |
+
if image_processing_config is None:
|
135 |
+
return pil_img
|
136 |
+
images = pil_img
|
137 |
+
if isinstance(pil_img, Image.Image):
|
138 |
+
images = [images]
|
139 |
+
if image_processing_config['do_crop']:
|
140 |
+
images = [self.centralcrop(img, rate=[4, 3]) for img in images]
|
141 |
+
if image_processing_config['do_padding']:
|
142 |
+
images = [self.expand2square(
|
143 |
+
img,
|
144 |
+
# tuple(int(x * 255) for x in self.processor.image_processor.image_mean)
|
145 |
+
tuple(int(x * 255) for x in [0, 0, 0])
|
146 |
+
) for img in images]
|
147 |
+
if image_processing_config['do_resize']:
|
148 |
+
images = [self.resize2square(img) for img in images]
|
149 |
+
if image_processing_config.get('max_pixels'):
|
150 |
+
images = [self.resize2pixels(
|
151 |
+
img,
|
152 |
+
int(image_processing_config['max_pixels']),
|
153 |
+
int(image_processing_config['min_pixels'])
|
154 |
+
) for img in images]
|
155 |
+
if isinstance(pil_img, Image.Image):
|
156 |
+
images = images[0]
|
157 |
+
return images
|
158 |
+
|
159 |
+
def expand2square(self, pil_img, background_color):
|
160 |
+
width, height = pil_img.size
|
161 |
+
if width == height:
|
162 |
+
return pil_img
|
163 |
+
elif width > height:
|
164 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
165 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
166 |
+
return result
|
167 |
+
else:
|
168 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
169 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
170 |
+
return result
|
171 |
+
|
172 |
+
def resize2square(self, pil_img: Image.Image):
|
173 |
+
width, height = pil_img.size
|
174 |
+
pil_img = pil_img.resize((max(width, height), max(width, height)))
|
175 |
+
return pil_img
|
176 |
+
|
177 |
+
def centralcrop(self, pil_img: Image.Image, rate=[4, 3]):
|
178 |
+
width, height = pil_img.size
|
179 |
+
size = (width, height)
|
180 |
+
min_len = min(size)
|
181 |
+
longer_side = 0 if width >= height else 1
|
182 |
+
center = (width/2, height/2)
|
183 |
+
box = [0, 0, size[0], size[1]]
|
184 |
+
|
185 |
+
# if longer_side == 0:
|
186 |
+
# box[0] = max(0, center[0] - 1/2*min_len/rate[1]*rate[0])
|
187 |
+
# box[2] = min(width, center[0] + 1/2*min_len/rate[1]*rate[0])
|
188 |
+
# else:
|
189 |
+
# box[1] = max(0, center[1] - 1/2*min_len/rate[1]*rate[0])
|
190 |
+
# box[3] = min(height, center[1] + 1/2*min_len/rate[1]*rate[0])
|
191 |
+
box[longer_side] = max(0, center[longer_side] - 1/2*min_len/rate[1]*rate[0])
|
192 |
+
box[2 + longer_side] = min(size[longer_side], center[longer_side] + 1/2*min_len/rate[1]*rate[0])
|
193 |
+
|
194 |
+
# box = (width/2-min_len/2, height/2-min_len/2, width/2+min_len/2, height/2+min_len/2)
|
195 |
+
pil_img = pil_img.crop(box)
|
196 |
+
return pil_img
|
197 |
+
|
198 |
+
def resize2pixels(self, pil_img: Image.Image, max_pixels=None, min_pixels=None):
|
199 |
+
width, height = pil_img.size
|
200 |
+
new_height, new_width = smart_resize(height, width, factor=1, max_pixels=max_pixels, min_pixels=min_pixels)
|
201 |
+
pil_img = pil_img.resize((new_width, new_height))
|
202 |
+
return pil_img
|
203 |
+
|
204 |
+
def get_num_vision_tokens(self, content):
|
205 |
+
if isinstance(self.image_processor, Qwen2VLImageProcessor):
|
206 |
+
merge_length = self.image_processor.merge_size**2
|
207 |
+
if content['type'] == 'image':
|
208 |
+
num_image_tokens = content['image']['image_grid_thw'].prod() // merge_length
|
209 |
+
else:
|
210 |
+
num_image_tokens = content['video']['video_grid_thw'].prod() // merge_length
|
211 |
+
return num_image_tokens
|
212 |
+
else:
|
213 |
+
# 其他模型:image tokens (-> 2x2 compressed) -> add image_newline and image_new
|
214 |
+
k = 'image'if content['type'] == 'image' else 'video'
|
215 |
+
pixel_values = content[k]['pixel_values'][0]
|
216 |
+
n_frames = len(content[k]['pixel_values'])
|
217 |
+
|
218 |
+
height, width = get_image_size(to_numpy_array(pixel_values))
|
219 |
+
num_image_tokens = (height // (self.patch_size * self.merge_size)) * (width // (self.patch_size * self.merge_size) + 1) + 1
|
220 |
+
return num_image_tokens * n_frames
|
221 |
+
|
222 |
+
def batch_decode(self, *args, **kwargs):
|
223 |
+
"""
|
224 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
225 |
+
refer to the docstring of this method for more information.
|
226 |
+
"""
|
227 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
228 |
+
|
229 |
+
def decode(self, *args, **kwargs):
|
230 |
+
"""
|
231 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
232 |
+
the docstring of this method for more information.
|
233 |
+
"""
|
234 |
+
return self.tokenizer.decode(*args, **kwargs)
|
235 |
+
|
236 |
+
@property
|
237 |
+
def model_input_names(self):
|
238 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
239 |
+
image_processor_input_names = self.image_processor.model_input_names
|
240 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
dataset/utils.py
CHANGED
@@ -126,3 +126,61 @@ def get_benchmarks(benchmarks):
|
|
126 |
else:
|
127 |
final_benchmarks.append(bm)
|
128 |
return final_benchmarks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
else:
|
127 |
final_benchmarks.append(bm)
|
128 |
return final_benchmarks
|
129 |
+
|
130 |
+
def check_data_format(data):
|
131 |
+
for msg in data['messages']:
|
132 |
+
if isinstance(msg['content'], dict):
|
133 |
+
msg['content'] = [msg['content']]
|
134 |
+
for content in msg['content']:
|
135 |
+
assert content['type'] in {'image', 'video', 'text'}, f"content['type']={content['type']} MUST be one of ['image', 'video', 'text']"
|
136 |
+
if content['type'] != "text":
|
137 |
+
media_path_key = f"{content['type']}_file"
|
138 |
+
meida_paths = content[content['type']][media_path_key]
|
139 |
+
if isinstance(meida_paths, str):
|
140 |
+
meida_paths = [meida_paths]
|
141 |
+
for path in meida_paths:
|
142 |
+
assert os.path.exists(path), f"File not found: {path}"
|
143 |
+
|
144 |
+
def format_one_sample(media_file=None, prompt="Describe the video in detail."):
|
145 |
+
sample = {
|
146 |
+
"messages": []
|
147 |
+
}
|
148 |
+
user_content = {
|
149 |
+
"role": "user",
|
150 |
+
"content": []
|
151 |
+
}
|
152 |
+
if media_file is not None:
|
153 |
+
media_type = get_visual_type(media_file)
|
154 |
+
if media_type in ("video", "gif"):
|
155 |
+
media_type = "video"
|
156 |
+
media_path_key = f"{media_type}_file"
|
157 |
+
user_content["content"].append({
|
158 |
+
"type": media_type,
|
159 |
+
media_type: {
|
160 |
+
media_path_key: media_file,
|
161 |
+
}
|
162 |
+
})
|
163 |
+
user_content["content"].append({
|
164 |
+
"type": "text",
|
165 |
+
"text": prompt
|
166 |
+
})
|
167 |
+
|
168 |
+
assistant_content = {
|
169 |
+
"role": "assistant",
|
170 |
+
"content": []
|
171 |
+
}
|
172 |
+
|
173 |
+
sample["messages"].append(user_content)
|
174 |
+
sample["messages"].append(assistant_content)
|
175 |
+
if media_file is not None:
|
176 |
+
sample["task"] = f"{media_type}/QA"
|
177 |
+
else:
|
178 |
+
sample["task"] = 'text-only'
|
179 |
+
check_data_format(sample)
|
180 |
+
return sample
|
181 |
+
|
182 |
+
|
183 |
+
class DictToObject(object):
|
184 |
+
def __init__(self, dictionary):
|
185 |
+
for key, value in dictionary.items():
|
186 |
+
setattr(self, key, value)
|
models/modeling_qwen2_vl_fast.py
ADDED
@@ -0,0 +1,1320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn import LayerNorm
|
10 |
+
|
11 |
+
from transformers.modeling_utils import PreTrainedModel
|
12 |
+
from transformers.configuration_utils import PretrainedConfig
|
13 |
+
from transformers.modeling_rope_utils import rope_config_validation, ROPE_INIT_FUNCTIONS
|
14 |
+
from transformers.cache_utils import Cache, SlidingWindowCache, StaticCache
|
15 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
16 |
+
from transformers.utils import (
|
17 |
+
add_start_docstrings,
|
18 |
+
add_start_docstrings_to_model_forward,
|
19 |
+
is_flash_attn_2_available,
|
20 |
+
is_flash_attn_greater_or_equal_2_10,
|
21 |
+
logging,
|
22 |
+
replace_return_docstrings,
|
23 |
+
)
|
24 |
+
from transformers.modeling_outputs import (
|
25 |
+
BaseModelOutputWithPast,
|
26 |
+
ModelOutput,
|
27 |
+
)
|
28 |
+
from transformers.activations import ACT2FN
|
29 |
+
from transformers.generation import GenerationMixin
|
30 |
+
|
31 |
+
if is_flash_attn_2_available():
|
32 |
+
from flash_attn import flash_attn_varlen_func
|
33 |
+
|
34 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
35 |
+
else:
|
36 |
+
flash_attn_varlen_func = None
|
37 |
+
|
38 |
+
# from apex.normalization.fused_layer_norm import fused_rms_norm_affine
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
|
44 |
+
"""
|
45 |
+
Base class for Qwen2VL causal language model (or autoregressive) outputs.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
49 |
+
Language modeling loss (for next-token prediction).
|
50 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
51 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
52 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
53 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
54 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
55 |
+
|
56 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
57 |
+
`past_key_values` input) to speed up sequential decoding.
|
58 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
59 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
60 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
61 |
+
|
62 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
63 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
64 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
65 |
+
sequence_length)`.
|
66 |
+
|
67 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
68 |
+
heads.
|
69 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
70 |
+
The rope index difference between sequence length and multimodal rope.
|
71 |
+
"""
|
72 |
+
|
73 |
+
loss: Optional[torch.FloatTensor] = None
|
74 |
+
logits: torch.FloatTensor = None
|
75 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
76 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
77 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
78 |
+
|
79 |
+
class Qwen2VLVisionConfig(PretrainedConfig):
|
80 |
+
model_type = "qwen2_vl"
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
depth=32,
|
85 |
+
embed_dim=1280,
|
86 |
+
hidden_size=3584,
|
87 |
+
hidden_act="quick_gelu",
|
88 |
+
mlp_ratio=4,
|
89 |
+
num_heads=16,
|
90 |
+
in_channels=3,
|
91 |
+
patch_size=14,
|
92 |
+
spatial_merge_size=2,
|
93 |
+
temporal_patch_size=2,
|
94 |
+
attn_implementation='flash_attention_2',
|
95 |
+
**kwargs,
|
96 |
+
):
|
97 |
+
super().__init__(**kwargs)
|
98 |
+
|
99 |
+
self.depth = depth
|
100 |
+
self.embed_dim = embed_dim
|
101 |
+
self.hidden_size = hidden_size
|
102 |
+
self.hidden_act = hidden_act
|
103 |
+
self.mlp_ratio = mlp_ratio
|
104 |
+
self.num_heads = num_heads
|
105 |
+
self.in_channels = in_channels
|
106 |
+
self.patch_size = patch_size
|
107 |
+
self.spatial_merge_size = spatial_merge_size
|
108 |
+
self.temporal_patch_size = temporal_patch_size
|
109 |
+
self.attn_implementation = attn_implementation
|
110 |
+
|
111 |
+
@classmethod
|
112 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
113 |
+
cls._set_token_in_kwargs(kwargs)
|
114 |
+
|
115 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
116 |
+
|
117 |
+
if config_dict.get("model_type") == "qwen2_vl":
|
118 |
+
config_dict = config_dict["vision_config"]
|
119 |
+
|
120 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
121 |
+
logger.warning(
|
122 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
123 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
124 |
+
)
|
125 |
+
|
126 |
+
return cls.from_dict(config_dict, **kwargs)
|
127 |
+
|
128 |
+
|
129 |
+
class Qwen2VLConfig(PretrainedConfig):
|
130 |
+
r"""
|
131 |
+
This is the configuration class to store the configuration of a [`Qwen2VLModel`]. It is used to instantiate a
|
132 |
+
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
133 |
+
with the defaults will yield a similar configuration to that of
|
134 |
+
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
135 |
+
|
136 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
137 |
+
documentation from [`PretrainedConfig`] for more information.
|
138 |
+
|
139 |
+
|
140 |
+
Args:
|
141 |
+
vocab_size (`int`, *optional*, defaults to 152064):
|
142 |
+
Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
|
143 |
+
`inputs_ids` passed when calling [`Qwen2VLModel`]
|
144 |
+
hidden_size (`int`, *optional*, defaults to 8192):
|
145 |
+
Dimension of the hidden representations.
|
146 |
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
147 |
+
Dimension of the MLP representations.
|
148 |
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
149 |
+
Number of hidden layers in the Transformer encoder.
|
150 |
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
151 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
152 |
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
153 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
154 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
155 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
156 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
157 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
158 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
159 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
160 |
+
The non-linear activation function (function or string) in the decoder.
|
161 |
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
162 |
+
The maximum sequence length that this model might ever be used with.
|
163 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
164 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
165 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
166 |
+
The epsilon used by the rms normalization layers.
|
167 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
168 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
169 |
+
relevant if `config.is_decoder=True`.
|
170 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
171 |
+
Whether the model's input and output word embeddings should be tied.
|
172 |
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
173 |
+
The base period of the RoPE embeddings.
|
174 |
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
175 |
+
Whether to use sliding window attention.
|
176 |
+
sliding_window (`int`, *optional*, defaults to 4096):
|
177 |
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
178 |
+
max_window_layers (`int`, *optional*, defaults to 80):
|
179 |
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
180 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
181 |
+
The dropout ratio for the attention probabilities.
|
182 |
+
vision_config (`Dict`, *optional*):
|
183 |
+
The config for the visual encoder initialization.
|
184 |
+
rope_scaling (`Dict`, *optional*):
|
185 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
186 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
187 |
+
accordingly.
|
188 |
+
Expected contents:
|
189 |
+
`rope_type` (`str`):
|
190 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
191 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
192 |
+
`factor` (`float`, *optional*):
|
193 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
194 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
195 |
+
original maximum pre-trained length.
|
196 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
197 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
198 |
+
pretraining.
|
199 |
+
`attention_factor` (`float`, *optional*):
|
200 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
201 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
202 |
+
`factor` field to infer the suggested value.
|
203 |
+
`beta_fast` (`float`, *optional*):
|
204 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
205 |
+
ramp function. If unspecified, it defaults to 32.
|
206 |
+
`beta_slow` (`float`, *optional*):
|
207 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
208 |
+
ramp function. If unspecified, it defaults to 1.
|
209 |
+
`short_factor` (`List[float]`, *optional*):
|
210 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
211 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
212 |
+
size divided by the number of attention heads divided by 2
|
213 |
+
`long_factor` (`List[float]`, *optional*):
|
214 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
215 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
216 |
+
size divided by the number of attention heads divided by 2
|
217 |
+
`low_freq_factor` (`float`, *optional*):
|
218 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
219 |
+
`high_freq_factor` (`float`, *optional*):
|
220 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
221 |
+
|
222 |
+
```python
|
223 |
+
>>> from transformers import Qwen2VLForConditionalGeneration, Qwen2VLConfig
|
224 |
+
|
225 |
+
>>> # Initializing a Qwen2VL style configuration
|
226 |
+
>>> configuration = Qwen2VLConfig()
|
227 |
+
|
228 |
+
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
229 |
+
>>> model = Qwen2VLForConditionalGeneration(configuration)
|
230 |
+
|
231 |
+
>>> # Accessing the model configuration
|
232 |
+
>>> configuration = model.config
|
233 |
+
```"""
|
234 |
+
|
235 |
+
model_type = "qwen2_vl"
|
236 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
237 |
+
|
238 |
+
def __init__(
|
239 |
+
self,
|
240 |
+
vocab_size=152064,
|
241 |
+
hidden_size=8192,
|
242 |
+
intermediate_size=29568,
|
243 |
+
num_hidden_layers=80,
|
244 |
+
num_attention_heads=64,
|
245 |
+
num_key_value_heads=8,
|
246 |
+
hidden_act="silu",
|
247 |
+
max_position_embeddings=32768,
|
248 |
+
initializer_range=0.02,
|
249 |
+
rms_norm_eps=1e-05,
|
250 |
+
use_cache=True,
|
251 |
+
tie_word_embeddings=False,
|
252 |
+
rope_theta=1000000.0,
|
253 |
+
use_sliding_window=False,
|
254 |
+
sliding_window=4096,
|
255 |
+
max_window_layers=80,
|
256 |
+
attention_dropout=0.0,
|
257 |
+
rope_scaling=None,
|
258 |
+
spatial_merge_size=2,
|
259 |
+
attn_implementation='flash_attention_2',
|
260 |
+
**kwargs,
|
261 |
+
):
|
262 |
+
|
263 |
+
self.vocab_size = vocab_size
|
264 |
+
self.max_position_embeddings = max_position_embeddings
|
265 |
+
self.hidden_size = hidden_size
|
266 |
+
self.intermediate_size = intermediate_size
|
267 |
+
self.num_hidden_layers = num_hidden_layers
|
268 |
+
self.num_attention_heads = num_attention_heads
|
269 |
+
self.use_sliding_window = use_sliding_window
|
270 |
+
self.sliding_window = sliding_window
|
271 |
+
self.max_window_layers = max_window_layers
|
272 |
+
|
273 |
+
# for backward compatibility
|
274 |
+
if num_key_value_heads is None:
|
275 |
+
num_key_value_heads = num_attention_heads
|
276 |
+
|
277 |
+
self.num_key_value_heads = num_key_value_heads
|
278 |
+
self.hidden_act = hidden_act
|
279 |
+
self.initializer_range = initializer_range
|
280 |
+
self.rms_norm_eps = rms_norm_eps
|
281 |
+
self.use_cache = use_cache
|
282 |
+
self.rope_theta = rope_theta
|
283 |
+
self.attention_dropout = attention_dropout
|
284 |
+
self.rope_scaling = rope_scaling
|
285 |
+
self.spatial_merge_size = spatial_merge_size
|
286 |
+
self.attn_implementation = attn_implementation
|
287 |
+
|
288 |
+
# Validate the correctness of rotary position embeddings parameters
|
289 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
290 |
+
# and change type from 'mrope' to 'default' because `mrope` does defeault RoPE calculations
|
291 |
+
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
292 |
+
# TODO: @raushan update config in the hub
|
293 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
294 |
+
if self.rope_scaling["type"] == "mrope":
|
295 |
+
self.rope_scaling["type"] = "default"
|
296 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
297 |
+
rope_config_validation(self, ignore_keys={"mrope_section"})
|
298 |
+
|
299 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
300 |
+
|
301 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
302 |
+
def rotate_half(x):
|
303 |
+
"""Rotates half the hidden dims of the input."""
|
304 |
+
x1 = x[..., : x.shape[-1] // 2]
|
305 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
306 |
+
return torch.cat((-x2, x1), dim=-1)
|
307 |
+
|
308 |
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
309 |
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
310 |
+
|
311 |
+
Explanation:
|
312 |
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
313 |
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
314 |
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately.
|
315 |
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
316 |
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
317 |
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
318 |
+
difference with modern LLMs.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
q (`torch.Tensor`): The query tensor.
|
322 |
+
k (`torch.Tensor`): The key tensor.
|
323 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
324 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
325 |
+
position_ids (`torch.Tensor`):
|
326 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
327 |
+
used to pass offsetted position ids when working with a KV-cache.
|
328 |
+
mrope_section(`List(int)`):
|
329 |
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
330 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
331 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
332 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
333 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
334 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
335 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
336 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
337 |
+
Returns:
|
338 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
339 |
+
"""
|
340 |
+
mrope_section = mrope_section * 2
|
341 |
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
342 |
+
unsqueeze_dim
|
343 |
+
)
|
344 |
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
345 |
+
unsqueeze_dim
|
346 |
+
)
|
347 |
+
|
348 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
349 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
350 |
+
return q_embed, k_embed
|
351 |
+
|
352 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
353 |
+
orig_dtype = tensor.dtype
|
354 |
+
tensor = tensor.float()
|
355 |
+
cos = freqs.cos()
|
356 |
+
sin = freqs.sin()
|
357 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
358 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
359 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
360 |
+
output = output.to(orig_dtype)
|
361 |
+
return output
|
362 |
+
|
363 |
+
|
364 |
+
class VisionRotaryEmbedding(nn.Module):
|
365 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
366 |
+
super().__init__()
|
367 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
368 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
369 |
+
|
370 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
371 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
372 |
+
freqs = torch.outer(seq, self.inv_freq)
|
373 |
+
return freqs
|
374 |
+
|
375 |
+
class PatchEmbed(nn.Module):
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
patch_size: int = 14,
|
379 |
+
temporal_patch_size: int = 2,
|
380 |
+
in_channels: int = 3,
|
381 |
+
embed_dim: int = 1152,
|
382 |
+
) -> None:
|
383 |
+
super().__init__()
|
384 |
+
self.patch_size = patch_size
|
385 |
+
self.temporal_patch_size = temporal_patch_size
|
386 |
+
self.in_channels = in_channels
|
387 |
+
self.embed_dim = embed_dim
|
388 |
+
|
389 |
+
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
390 |
+
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
391 |
+
|
392 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
393 |
+
target_dtype = self.proj.weight.dtype
|
394 |
+
hidden_states = hidden_states.view(
|
395 |
+
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
396 |
+
)
|
397 |
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
398 |
+
return hidden_states
|
399 |
+
|
400 |
+
|
401 |
+
class PatchMerger(nn.Module):
|
402 |
+
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
403 |
+
super().__init__()
|
404 |
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
405 |
+
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
406 |
+
self.mlp = nn.Sequential(
|
407 |
+
nn.Linear(self.hidden_size, self.hidden_size),
|
408 |
+
nn.GELU(),
|
409 |
+
nn.Linear(self.hidden_size, dim),
|
410 |
+
)
|
411 |
+
|
412 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
413 |
+
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
414 |
+
return x
|
415 |
+
|
416 |
+
class VisionMlp(nn.Module):
|
417 |
+
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
418 |
+
super().__init__()
|
419 |
+
self.fc1 = nn.Linear(dim, hidden_dim)
|
420 |
+
self.act = ACT2FN[hidden_act]
|
421 |
+
self.fc2 = nn.Linear(hidden_dim, dim)
|
422 |
+
|
423 |
+
def forward(self, x) -> torch.Tensor:
|
424 |
+
return self.fc2(self.act(self.fc1(x)))
|
425 |
+
|
426 |
+
|
427 |
+
class VisionAttention(nn.Module):
|
428 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
429 |
+
super().__init__()
|
430 |
+
self.num_heads = num_heads
|
431 |
+
self.head_dim = dim // num_heads
|
432 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
433 |
+
self.proj = nn.Linear(dim, dim)
|
434 |
+
|
435 |
+
def forward(
|
436 |
+
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
437 |
+
) -> torch.Tensor:
|
438 |
+
seq_length = hidden_states.shape[0]
|
439 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
440 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
441 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
442 |
+
|
443 |
+
attention_mask = torch.full(
|
444 |
+
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
445 |
+
)
|
446 |
+
for i in range(1, len(cu_seqlens)):
|
447 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
|
448 |
+
|
449 |
+
q = q.transpose(0, 1)
|
450 |
+
k = k.transpose(0, 1)
|
451 |
+
v = v.transpose(0, 1)
|
452 |
+
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
453 |
+
attn_weights = attn_weights + attention_mask
|
454 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
455 |
+
attn_output = torch.matmul(attn_weights, v)
|
456 |
+
attn_output = attn_output.transpose(0, 1)
|
457 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
458 |
+
attn_output = self.proj(attn_output)
|
459 |
+
return attn_output
|
460 |
+
|
461 |
+
|
462 |
+
class VisionFlashAttention2(nn.Module):
|
463 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
464 |
+
super().__init__()
|
465 |
+
self.num_heads = num_heads
|
466 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
467 |
+
self.proj = nn.Linear(dim, dim)
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
471 |
+
) -> torch.Tensor:
|
472 |
+
seq_length = hidden_states.shape[0]
|
473 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
474 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
475 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
476 |
+
|
477 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
478 |
+
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
479 |
+
seq_length, -1
|
480 |
+
)
|
481 |
+
attn_output = self.proj(attn_output)
|
482 |
+
return attn_output
|
483 |
+
|
484 |
+
QWEN2_VL_VISION_ATTENTION_CLASSES = {
|
485 |
+
"eager": VisionAttention,
|
486 |
+
"flash_attention_2": VisionFlashAttention2,
|
487 |
+
}
|
488 |
+
|
489 |
+
|
490 |
+
class Qwen2VLVisionBlock(nn.Module):
|
491 |
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
492 |
+
super().__init__()
|
493 |
+
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
|
494 |
+
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
|
495 |
+
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
496 |
+
|
497 |
+
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
|
498 |
+
config.embed_dim, num_heads=config.num_heads
|
499 |
+
)
|
500 |
+
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
501 |
+
|
502 |
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
503 |
+
hidden_states = hidden_states + self.attn(
|
504 |
+
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
505 |
+
)
|
506 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
class Qwen2VLPreTrainedModel(PreTrainedModel):
|
510 |
+
config_class = Qwen2VLConfig
|
511 |
+
base_model_prefix = "model"
|
512 |
+
supports_gradient_checkpointing = True
|
513 |
+
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"]
|
514 |
+
_skip_keys_device_placement = "past_key_values"
|
515 |
+
_supports_flash_attn_2 = True
|
516 |
+
_supports_sdpa = False
|
517 |
+
_supports_cache_class = True
|
518 |
+
_supports_static_cache = True
|
519 |
+
|
520 |
+
def _init_weights(self, module):
|
521 |
+
std = self.config.initializer_range
|
522 |
+
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
523 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
524 |
+
if module.bias is not None:
|
525 |
+
module.bias.data.zero_()
|
526 |
+
elif isinstance(module, nn.Embedding):
|
527 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
528 |
+
if module.padding_idx is not None:
|
529 |
+
module.weight.data[module.padding_idx].zero_()
|
530 |
+
|
531 |
+
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
532 |
+
config_class = Qwen2VLVisionConfig
|
533 |
+
_no_split_modules = ["Qwen2VLVisionBlock"]
|
534 |
+
|
535 |
+
def __init__(self, config) -> None:
|
536 |
+
super().__init__(config)
|
537 |
+
self.spatial_merge_size = config.spatial_merge_size
|
538 |
+
|
539 |
+
self.patch_embed = PatchEmbed(
|
540 |
+
patch_size=config.patch_size,
|
541 |
+
temporal_patch_size=config.temporal_patch_size,
|
542 |
+
in_channels=config.in_channels,
|
543 |
+
embed_dim=config.embed_dim,
|
544 |
+
)
|
545 |
+
|
546 |
+
head_dim = config.embed_dim // config.num_heads
|
547 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
548 |
+
|
549 |
+
self.blocks = nn.ModuleList(
|
550 |
+
[Qwen2VLVisionBlock(config, config.attn_implementation) for _ in range(config.depth)]
|
551 |
+
)
|
552 |
+
self.merger = PatchMerger(
|
553 |
+
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
|
554 |
+
)
|
555 |
+
# Initialize weights and apply final processing
|
556 |
+
self.gradient_checkpointing = False
|
557 |
+
self.post_init()
|
558 |
+
|
559 |
+
def get_dtype(self) -> torch.dtype:
|
560 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
561 |
+
|
562 |
+
def get_device(self) -> torch.device:
|
563 |
+
return self.blocks[0].mlp.fc2.weight.device
|
564 |
+
|
565 |
+
def rot_pos_emb(self, grid_thw):
|
566 |
+
pos_ids = []
|
567 |
+
for t, h, w in grid_thw:
|
568 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
569 |
+
hpos_ids = hpos_ids.reshape(
|
570 |
+
h // self.spatial_merge_size,
|
571 |
+
self.spatial_merge_size,
|
572 |
+
w // self.spatial_merge_size,
|
573 |
+
self.spatial_merge_size,
|
574 |
+
)
|
575 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
576 |
+
hpos_ids = hpos_ids.flatten()
|
577 |
+
|
578 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
579 |
+
wpos_ids = wpos_ids.reshape(
|
580 |
+
h // self.spatial_merge_size,
|
581 |
+
self.spatial_merge_size,
|
582 |
+
w // self.spatial_merge_size,
|
583 |
+
self.spatial_merge_size,
|
584 |
+
)
|
585 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
586 |
+
wpos_ids = wpos_ids.flatten()
|
587 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
588 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
589 |
+
max_grid_size = grid_thw[:, 1:].max()
|
590 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
591 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
592 |
+
return rotary_pos_emb
|
593 |
+
|
594 |
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
595 |
+
hidden_states = self.patch_embed(hidden_states)
|
596 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
597 |
+
|
598 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
599 |
+
dim=0, dtype=torch.int32
|
600 |
+
)
|
601 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
602 |
+
|
603 |
+
for blk in self.blocks:
|
604 |
+
if self.gradient_checkpointing and self.training:
|
605 |
+
hidden_states = self._gradient_checkpointing_func(
|
606 |
+
blk.__call__,
|
607 |
+
hidden_states,
|
608 |
+
cu_seqlens,
|
609 |
+
rotary_pos_emb,
|
610 |
+
)
|
611 |
+
else:
|
612 |
+
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
613 |
+
|
614 |
+
return self.merger(hidden_states)
|
615 |
+
|
616 |
+
# class Qwen2RMSNorm(nn.Module):
|
617 |
+
# def __init__(self, hidden_size, eps=1e-6):
|
618 |
+
# """
|
619 |
+
# Qwen2RMSNorm is equivalent to T5LayerNorm
|
620 |
+
# """
|
621 |
+
# super().__init__()
|
622 |
+
# self.weight = nn.Parameter(torch.ones(hidden_size))
|
623 |
+
# self.variance_epsilon = eps
|
624 |
+
# self.normalized_shape = torch.Size((hidden_size, ))
|
625 |
+
|
626 |
+
# def forward(self, hidden_states):
|
627 |
+
# return fused_rms_norm_affine(input=hidden_states,
|
628 |
+
# weight=self.weight,
|
629 |
+
# normalized_shape=self.normalized_shape,
|
630 |
+
# eps=self.variance_epsilon,
|
631 |
+
# memory_efficient=True)
|
632 |
+
|
633 |
+
class Qwen2RMSNorm(nn.Module):
|
634 |
+
def __init__(self, hidden_size, eps=1e-6):
|
635 |
+
"""
|
636 |
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
637 |
+
"""
|
638 |
+
super().__init__()
|
639 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
640 |
+
self.variance_epsilon = eps
|
641 |
+
|
642 |
+
def forward(self, hidden_states):
|
643 |
+
input_dtype = hidden_states.dtype
|
644 |
+
hidden_states = hidden_states.to(torch.float32)
|
645 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
646 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
647 |
+
return self.weight * hidden_states.to(input_dtype)
|
648 |
+
|
649 |
+
def extra_repr(self):
|
650 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
651 |
+
|
652 |
+
class Qwen2VLRotaryEmbedding(nn.Module):
|
653 |
+
def __init__(
|
654 |
+
self,
|
655 |
+
dim=None,
|
656 |
+
max_position_embeddings=2048,
|
657 |
+
base=10000,
|
658 |
+
device=None,
|
659 |
+
scaling_factor=1.0,
|
660 |
+
rope_type="default",
|
661 |
+
config: Optional[Qwen2VLConfig] = None,
|
662 |
+
):
|
663 |
+
super().__init__()
|
664 |
+
# TODO (joao): remove the `if` below, only used for BC
|
665 |
+
self.rope_kwargs = {}
|
666 |
+
if config is None:
|
667 |
+
logger.warning_once(
|
668 |
+
"`Qwen2VLRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
669 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
670 |
+
)
|
671 |
+
self.rope_kwargs = {
|
672 |
+
"rope_type": rope_type,
|
673 |
+
"factor": scaling_factor,
|
674 |
+
"dim": dim,
|
675 |
+
"base": base,
|
676 |
+
"max_position_embeddings": max_position_embeddings,
|
677 |
+
}
|
678 |
+
self.rope_type = rope_type
|
679 |
+
self.max_seq_len_cached = max_position_embeddings
|
680 |
+
self.original_max_seq_len = max_position_embeddings
|
681 |
+
else:
|
682 |
+
# BC: "rope_type" was originally "type"
|
683 |
+
if config.rope_scaling is not None:
|
684 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
685 |
+
else:
|
686 |
+
self.rope_type = "default"
|
687 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
688 |
+
self.original_max_seq_len = config.max_position_embeddings
|
689 |
+
|
690 |
+
self.config = config
|
691 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
692 |
+
|
693 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
694 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
695 |
+
self.original_inv_freq = self.inv_freq
|
696 |
+
|
697 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
698 |
+
"""
|
699 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
700 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
701 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
702 |
+
"""
|
703 |
+
seq_len = torch.max(position_ids) + 1
|
704 |
+
if seq_len > self.max_seq_len_cached: # growth
|
705 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
706 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
707 |
+
)
|
708 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
709 |
+
self.max_seq_len_cached = seq_len
|
710 |
+
|
711 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
712 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
713 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
714 |
+
|
715 |
+
@torch.no_grad()
|
716 |
+
def forward(self, x, position_ids):
|
717 |
+
position_ids = position_ids.permute(2, 0, 1)
|
718 |
+
if "dynamic" in self.rope_type:
|
719 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
720 |
+
|
721 |
+
# Core RoPE block. In contrast to other models, Qwen2_VL has different position ids for thw grids
|
722 |
+
# So we expand the inv_freq to shape (3, ...)
|
723 |
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
724 |
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
725 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
726 |
+
device_type = x.device.type
|
727 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
728 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
729 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
730 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
731 |
+
cos = emb.cos()
|
732 |
+
sin = emb.sin()
|
733 |
+
|
734 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
735 |
+
cos = cos * self.attention_scaling
|
736 |
+
sin = sin * self.attention_scaling
|
737 |
+
|
738 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
739 |
+
|
740 |
+
# Copied from transformers.models.qwen2.modeling_qwen2.Qwen2MLP
|
741 |
+
class Qwen2MLP(nn.Module):
|
742 |
+
def __init__(self, config):
|
743 |
+
super().__init__()
|
744 |
+
self.hidden_size = config.hidden_size
|
745 |
+
self.intermediate_size = config.intermediate_size
|
746 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
747 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
748 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
749 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
750 |
+
|
751 |
+
def forward(self, hidden_state):
|
752 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
753 |
+
|
754 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
755 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
756 |
+
"""
|
757 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
758 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
759 |
+
"""
|
760 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
761 |
+
if n_rep == 1:
|
762 |
+
return hidden_states
|
763 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
764 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
765 |
+
|
766 |
+
class Qwen2VLAttention(nn.Module):
|
767 |
+
"""
|
768 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
769 |
+
and "Generating Long Sequences with Sparse Transformers".
|
770 |
+
"""
|
771 |
+
|
772 |
+
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
|
773 |
+
super().__init__()
|
774 |
+
self.config = config
|
775 |
+
self.layer_idx = layer_idx
|
776 |
+
if layer_idx is None:
|
777 |
+
logger.warning_once(
|
778 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
779 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
780 |
+
"when creating this class."
|
781 |
+
)
|
782 |
+
|
783 |
+
self.hidden_size = config.hidden_size
|
784 |
+
self.num_heads = config.num_attention_heads
|
785 |
+
self.head_dim = self.hidden_size // self.num_heads
|
786 |
+
self.num_key_value_heads = config.num_key_value_heads
|
787 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
788 |
+
self.max_position_embeddings = config.max_position_embeddings
|
789 |
+
self.rope_theta = config.rope_theta
|
790 |
+
self.is_causal = True
|
791 |
+
self.attention_dropout = config.attention_dropout
|
792 |
+
self.rope_scaling = config.rope_scaling
|
793 |
+
|
794 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
795 |
+
raise ValueError(
|
796 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
797 |
+
f" and `num_heads`: {self.num_heads})."
|
798 |
+
)
|
799 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
800 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
801 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
802 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
803 |
+
|
804 |
+
|
805 |
+
class Qwen2VLFlashAttention2(Qwen2VLAttention):
|
806 |
+
"""
|
807 |
+
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention`
|
808 |
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
809 |
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
810 |
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
811 |
+
config.max_window_layers layers.
|
812 |
+
"""
|
813 |
+
|
814 |
+
def __init__(self, *args, **kwargs):
|
815 |
+
super().__init__(*args, **kwargs)
|
816 |
+
|
817 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
818 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
819 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
820 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
821 |
+
|
822 |
+
def forward(
|
823 |
+
self,
|
824 |
+
hidden_states: torch.Tensor,
|
825 |
+
attention_mask: Optional[torch.Tensor] = None,
|
826 |
+
position_ids: Optional[torch.LongTensor] = None,
|
827 |
+
past_key_value: Optional[Cache] = None,
|
828 |
+
output_attentions: bool = False,
|
829 |
+
use_cache: bool = False,
|
830 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
831 |
+
use_rmpad: Optional[bool] = False,
|
832 |
+
cu_seqlens: Optional[torch.Tensor] = False,
|
833 |
+
):
|
834 |
+
"""
|
835 |
+
Train:
|
836 |
+
unpad: (bsz, q_len) = (1, acc_seqlen)
|
837 |
+
pad: (bsz, q_len) = (bsz, q_len)
|
838 |
+
Test:
|
839 |
+
first_iter: (bsz, q_len) = (bsz, q_len)
|
840 |
+
other: (bsz, q_len) = (bsz, 1)
|
841 |
+
"""
|
842 |
+
bsz, q_len, _ = hidden_states.size()
|
843 |
+
|
844 |
+
query_states = self.q_proj(hidden_states)
|
845 |
+
key_states = self.k_proj(hidden_states)
|
846 |
+
value_states = self.v_proj(hidden_states)
|
847 |
+
|
848 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
849 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
850 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
851 |
+
|
852 |
+
cos, sin = position_embeddings
|
853 |
+
|
854 |
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
855 |
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
856 |
+
)
|
857 |
+
|
858 |
+
if past_key_value is not None:
|
859 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
860 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
861 |
+
|
862 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
863 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
864 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
865 |
+
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
866 |
+
|
867 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
868 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
869 |
+
# cast them back in float16 just to be sure everything works as expected.
|
870 |
+
input_dtype = query_states.dtype
|
871 |
+
if input_dtype == torch.float32:
|
872 |
+
if torch.is_autocast_enabled():
|
873 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
874 |
+
# Handle the case where the model is quantized
|
875 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
876 |
+
target_dtype = self.config._pre_quantization_dtype
|
877 |
+
else:
|
878 |
+
target_dtype = self.q_proj.weight.dtype
|
879 |
+
|
880 |
+
logger.warning_once(
|
881 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
882 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
883 |
+
f" {target_dtype}."
|
884 |
+
)
|
885 |
+
|
886 |
+
query_states = query_states.to(target_dtype)
|
887 |
+
key_states = key_states.to(target_dtype)
|
888 |
+
value_states = value_states.to(target_dtype)
|
889 |
+
|
890 |
+
# Reashape to the expected shape for Flash Attention
|
891 |
+
query_states = query_states.transpose(1, 2)
|
892 |
+
key_states = key_states.transpose(1, 2)
|
893 |
+
value_states = value_states.transpose(1, 2)
|
894 |
+
|
895 |
+
if use_rmpad:
|
896 |
+
max_seqlen = torch.max(cu_seqlens[1:] - cu_seqlens[:-1]).item()
|
897 |
+
attn_output = flash_attn_varlen_func(
|
898 |
+
query_states.squeeze(0), key_states.squeeze(0), value_states.squeeze(0),
|
899 |
+
cu_seqlens_q=cu_seqlens, cu_seqlens_k=cu_seqlens,
|
900 |
+
max_seqlen_q=max_seqlen, max_seqlen_k=max_seqlen,
|
901 |
+
dropout_p=dropout_rate,
|
902 |
+
causal=self.is_causal, window_size=(-1, -1),
|
903 |
+
)
|
904 |
+
else:
|
905 |
+
attn_output = _flash_attention_forward(
|
906 |
+
query_states, key_states, value_states,
|
907 |
+
attention_mask,
|
908 |
+
q_len,
|
909 |
+
dropout=dropout_rate,
|
910 |
+
sliding_window=None,
|
911 |
+
is_causal=self.is_causal,
|
912 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
913 |
+
)
|
914 |
+
|
915 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
916 |
+
attn_output = self.o_proj(attn_output)
|
917 |
+
|
918 |
+
if not output_attentions:
|
919 |
+
attn_weights = None
|
920 |
+
|
921 |
+
return attn_output, attn_weights, past_key_value
|
922 |
+
|
923 |
+
QWEN2_VL_ATTENTION_CLASSES = {
|
924 |
+
"flash_attention_2": Qwen2VLFlashAttention2,
|
925 |
+
}
|
926 |
+
|
927 |
+
class Qwen2VLDecoderLayer(nn.Module):
|
928 |
+
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
|
929 |
+
super().__init__()
|
930 |
+
self.hidden_size = config.hidden_size
|
931 |
+
|
932 |
+
if config.attn_implementation != "flash_attention_2":
|
933 |
+
logger.error(
|
934 |
+
f"只支持 flash_attention_2!config.attn_implementation={config.attn_implementation}"
|
935 |
+
)
|
936 |
+
self.self_attn = QWEN2_VL_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx)
|
937 |
+
|
938 |
+
self.mlp = Qwen2MLP(config)
|
939 |
+
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
940 |
+
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
941 |
+
|
942 |
+
def forward(
|
943 |
+
self,
|
944 |
+
hidden_states: torch.Tensor,
|
945 |
+
attention_mask: Optional[torch.Tensor] = None,
|
946 |
+
position_ids: Optional[torch.LongTensor] = None,
|
947 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
948 |
+
output_attentions: Optional[bool] = False,
|
949 |
+
use_cache: Optional[bool] = False,
|
950 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
951 |
+
use_rmpad: Optional[bool] = False,
|
952 |
+
cu_seqlens: Optional[torch.Tensor] = False,
|
953 |
+
**kwargs,
|
954 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
955 |
+
"""
|
956 |
+
Args:
|
957 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
958 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
959 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
960 |
+
output_attentions (`bool`, *optional*):
|
961 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
962 |
+
returned tensors for more detail.
|
963 |
+
use_cache (`bool`, *optional*):
|
964 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
965 |
+
(see `past_key_values`).
|
966 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
967 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
968 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
969 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
970 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
971 |
+
with `head_dim` being the embedding dimension of each attention head.
|
972 |
+
kwargs (`dict`, *optional*):
|
973 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
974 |
+
into the model
|
975 |
+
"""
|
976 |
+
|
977 |
+
residual = hidden_states
|
978 |
+
|
979 |
+
hidden_states = self.input_layernorm(hidden_states)
|
980 |
+
|
981 |
+
# Self Attention
|
982 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
983 |
+
hidden_states=hidden_states,
|
984 |
+
attention_mask=attention_mask,
|
985 |
+
position_ids=position_ids,
|
986 |
+
past_key_value=past_key_value,
|
987 |
+
output_attentions=output_attentions,
|
988 |
+
use_cache=use_cache,
|
989 |
+
position_embeddings=position_embeddings,
|
990 |
+
use_rmpad=use_rmpad,
|
991 |
+
cu_seqlens=cu_seqlens,
|
992 |
+
)
|
993 |
+
hidden_states = residual + hidden_states
|
994 |
+
|
995 |
+
# Fully Connected
|
996 |
+
residual = hidden_states
|
997 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
998 |
+
hidden_states = self.mlp(hidden_states)
|
999 |
+
hidden_states = residual + hidden_states
|
1000 |
+
|
1001 |
+
outputs = (hidden_states,)
|
1002 |
+
|
1003 |
+
if output_attentions:
|
1004 |
+
outputs += (self_attn_weights,)
|
1005 |
+
|
1006 |
+
if use_cache:
|
1007 |
+
outputs += (present_key_value,)
|
1008 |
+
|
1009 |
+
return outputs
|
1010 |
+
|
1011 |
+
class Qwen2VLModel(Qwen2VLPreTrainedModel):
|
1012 |
+
def __init__(self, config: Qwen2VLConfig):
|
1013 |
+
super().__init__(config)
|
1014 |
+
self.padding_idx = config.pad_token_id
|
1015 |
+
self.vocab_size = config.vocab_size
|
1016 |
+
|
1017 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1018 |
+
self.layers = nn.ModuleList([Qwen2VLDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
1019 |
+
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1020 |
+
self.rotary_emb = Qwen2VLRotaryEmbedding(config=config)
|
1021 |
+
|
1022 |
+
self.gradient_checkpointing = False
|
1023 |
+
# Initialize weights and apply final processing
|
1024 |
+
self.post_init()
|
1025 |
+
|
1026 |
+
def get_input_embeddings(self):
|
1027 |
+
return self.embed_tokens
|
1028 |
+
|
1029 |
+
def set_input_embeddings(self, value):
|
1030 |
+
self.embed_tokens = value
|
1031 |
+
|
1032 |
+
def forward(
|
1033 |
+
self,
|
1034 |
+
input_ids: torch.LongTensor = None,
|
1035 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1036 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1037 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1038 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1039 |
+
use_cache: Optional[bool] = None,
|
1040 |
+
output_attentions: Optional[bool] = None,
|
1041 |
+
output_hidden_states: Optional[bool] = None,
|
1042 |
+
return_dict: Optional[bool] = None,
|
1043 |
+
use_rmpad: Optional[bool] = False,
|
1044 |
+
cu_seqlens: Optional[torch.Tensor] = False,
|
1045 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1046 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1047 |
+
output_hidden_states = (
|
1048 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1049 |
+
)
|
1050 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1051 |
+
|
1052 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1053 |
+
|
1054 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1055 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1056 |
+
|
1057 |
+
if self.gradient_checkpointing and self.training:
|
1058 |
+
if use_cache:
|
1059 |
+
logger.warning_once(
|
1060 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1061 |
+
)
|
1062 |
+
use_cache = False
|
1063 |
+
|
1064 |
+
|
1065 |
+
hidden_states = inputs_embeds
|
1066 |
+
|
1067 |
+
# create position embeddings to be shared across the decoder layers
|
1068 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
1069 |
+
|
1070 |
+
# decoder layers
|
1071 |
+
all_hidden_states = () if output_hidden_states else None
|
1072 |
+
all_self_attns = () if output_attentions else None
|
1073 |
+
next_decoder_cache = None
|
1074 |
+
|
1075 |
+
for decoder_layer in self.layers:
|
1076 |
+
if output_hidden_states:
|
1077 |
+
all_hidden_states += (hidden_states,)
|
1078 |
+
|
1079 |
+
if self.gradient_checkpointing and self.training:
|
1080 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1081 |
+
decoder_layer.__call__,
|
1082 |
+
hidden_states,
|
1083 |
+
attention_mask,
|
1084 |
+
position_ids,
|
1085 |
+
past_key_values,
|
1086 |
+
output_attentions,
|
1087 |
+
use_cache,
|
1088 |
+
position_embeddings,
|
1089 |
+
use_rmpad,
|
1090 |
+
cu_seqlens,
|
1091 |
+
)
|
1092 |
+
else:
|
1093 |
+
layer_outputs = decoder_layer(
|
1094 |
+
hidden_states,
|
1095 |
+
attention_mask=attention_mask,
|
1096 |
+
position_ids=position_ids,
|
1097 |
+
past_key_value=past_key_values,
|
1098 |
+
output_attentions=output_attentions,
|
1099 |
+
use_cache=use_cache,
|
1100 |
+
position_embeddings=position_embeddings,
|
1101 |
+
use_rmpad=use_rmpad,
|
1102 |
+
cu_seqlens=cu_seqlens,
|
1103 |
+
)
|
1104 |
+
|
1105 |
+
hidden_states = layer_outputs[0]
|
1106 |
+
|
1107 |
+
if use_cache:
|
1108 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1109 |
+
|
1110 |
+
if output_attentions:
|
1111 |
+
all_self_attns += (layer_outputs[1],)
|
1112 |
+
|
1113 |
+
hidden_states = self.norm(hidden_states)
|
1114 |
+
|
1115 |
+
# add hidden states from the last decoder layer
|
1116 |
+
if output_hidden_states:
|
1117 |
+
all_hidden_states += (hidden_states,)
|
1118 |
+
|
1119 |
+
next_cache = next_decoder_cache if use_cache else None
|
1120 |
+
|
1121 |
+
if not return_dict:
|
1122 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1123 |
+
return BaseModelOutputWithPast(
|
1124 |
+
last_hidden_state=hidden_states,
|
1125 |
+
past_key_values=next_cache,
|
1126 |
+
hidden_states=all_hidden_states,
|
1127 |
+
attentions=all_self_attns,
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
class Qwen2VLForCausalLM(Qwen2VLPreTrainedModel, GenerationMixin):
|
1131 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1132 |
+
|
1133 |
+
def __init__(self, config):
|
1134 |
+
super().__init__(config)
|
1135 |
+
self.model = Qwen2VLModel(config)
|
1136 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1137 |
+
self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
1138 |
+
|
1139 |
+
# Initialize weights and apply final processing
|
1140 |
+
self.post_init()
|
1141 |
+
|
1142 |
+
def get_input_embeddings(self):
|
1143 |
+
return self.model.embed_tokens
|
1144 |
+
|
1145 |
+
def set_input_embeddings(self, value):
|
1146 |
+
self.model.embed_tokens = value
|
1147 |
+
|
1148 |
+
def get_output_embeddings(self):
|
1149 |
+
return self.lm_head
|
1150 |
+
|
1151 |
+
def set_output_embeddings(self, new_embeddings):
|
1152 |
+
self.lm_head = new_embeddings
|
1153 |
+
|
1154 |
+
def set_decoder(self, decoder):
|
1155 |
+
self.model = decoder
|
1156 |
+
|
1157 |
+
def get_decoder(self):
|
1158 |
+
return self.model
|
1159 |
+
|
1160 |
+
def get_rope_index(
|
1161 |
+
self,
|
1162 |
+
input_ids: torch.LongTensor,
|
1163 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
1164 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1165 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1166 |
+
"""
|
1167 |
+
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
1168 |
+
|
1169 |
+
Explanation:
|
1170 |
+
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
1171 |
+
|
1172 |
+
For pure text embedding sequence, the rotary position embedding has no difference with mordern LLMs.
|
1173 |
+
Examples:
|
1174 |
+
input_ids: [T T T T T], here T is for text.
|
1175 |
+
temporal position_ids: [0, 1, 2, 3, 4]
|
1176 |
+
height position_ids: [0, 1, 2, 3, 4]
|
1177 |
+
width position_ids: [0, 1, 2, 3, 4]
|
1178 |
+
|
1179 |
+
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
1180 |
+
and 1D rotary position embeddin for text part.
|
1181 |
+
Examples:
|
1182 |
+
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
|
1183 |
+
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
1184 |
+
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
|
1185 |
+
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
1186 |
+
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
1187 |
+
text temporal position_ids: [3, 4, 5, 6, 7]
|
1188 |
+
text height position_ids: [3, 4, 5, 6, 7]
|
1189 |
+
text width position_ids: [3, 4, 5, 6, 7]
|
1190 |
+
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
1191 |
+
|
1192 |
+
Args:
|
1193 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1194 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1195 |
+
it.
|
1196 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
1197 |
+
The temporal, height and width of feature shape of each image in LLM.
|
1198 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
1199 |
+
The temporal, height and width of feature shape of each video in LLM.
|
1200 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1201 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1202 |
+
|
1203 |
+
- 1 for tokens that are **not masked**,
|
1204 |
+
- 0 for tokens that are **masked**.
|
1205 |
+
|
1206 |
+
Returns:
|
1207 |
+
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
|
1208 |
+
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
|
1209 |
+
"""
|
1210 |
+
spatial_merge_size = self.config.spatial_merge_size
|
1211 |
+
vision_token_id = self.config.image_token_id
|
1212 |
+
vision_start_token_id = self.config.vision_start_token_id
|
1213 |
+
assert image_grid_thw is not None # TODO:测试纯文本会不会卡住
|
1214 |
+
total_input_ids = input_ids
|
1215 |
+
position_ids = torch.ones(
|
1216 |
+
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
1217 |
+
)
|
1218 |
+
vision_index = 0
|
1219 |
+
for i, input_ids in enumerate(total_input_ids):
|
1220 |
+
if attention_mask is not None:
|
1221 |
+
input_ids = input_ids[attention_mask[i] == 1]
|
1222 |
+
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
|
1223 |
+
vision_num = (input_ids[vision_start_indices + 1] == vision_token_id).sum()
|
1224 |
+
input_tokens = input_ids.tolist()
|
1225 |
+
llm_pos_ids_list: list = []
|
1226 |
+
st = 0
|
1227 |
+
remain_vision_num = vision_num
|
1228 |
+
for _ in range(vision_num):
|
1229 |
+
if vision_token_id in input_tokens and remain_vision_num > 0:
|
1230 |
+
ed_vision = input_tokens.index(vision_token_id, st)
|
1231 |
+
else:
|
1232 |
+
ed_vision = len(input_tokens) + 1
|
1233 |
+
|
1234 |
+
t, h, w = (
|
1235 |
+
image_grid_thw[vision_index][0],
|
1236 |
+
image_grid_thw[vision_index][1],
|
1237 |
+
image_grid_thw[vision_index][2],
|
1238 |
+
)
|
1239 |
+
vision_index += 1
|
1240 |
+
remain_vision_num -= 1
|
1241 |
+
ed = ed_vision
|
1242 |
+
|
1243 |
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
1244 |
+
t.item(),
|
1245 |
+
h.item() // spatial_merge_size,
|
1246 |
+
w.item() // spatial_merge_size,
|
1247 |
+
)
|
1248 |
+
text_len = ed - st
|
1249 |
+
|
1250 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
1251 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
1252 |
+
|
1253 |
+
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
|
1254 |
+
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
|
1255 |
+
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
|
1256 |
+
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
|
1257 |
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
1258 |
+
|
1259 |
+
if st < len(input_tokens):
|
1260 |
+
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
|
1261 |
+
text_len = len(input_tokens) - st
|
1262 |
+
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
|
1263 |
+
|
1264 |
+
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
|
1265 |
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
|
1266 |
+
position_ids = position_ids.permute(1, 2, 0)
|
1267 |
+
return position_ids
|
1268 |
+
|
1269 |
+
def forward(
|
1270 |
+
self,
|
1271 |
+
input_ids: torch.LongTensor = None,
|
1272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1273 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1274 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1275 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1276 |
+
labels: Optional[torch.LongTensor] = None,
|
1277 |
+
use_cache: Optional[bool] = None,
|
1278 |
+
output_attentions: Optional[bool] = None,
|
1279 |
+
output_hidden_states: Optional[bool] = None,
|
1280 |
+
return_dict: Optional[bool] = None,
|
1281 |
+
use_rmpad: Optional[bool] = False,
|
1282 |
+
cu_seqlens: Optional[torch.Tensor] = False,
|
1283 |
+
) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
|
1284 |
+
|
1285 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1286 |
+
output_hidden_states = (
|
1287 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1288 |
+
)
|
1289 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1290 |
+
|
1291 |
+
|
1292 |
+
outputs = self.model(
|
1293 |
+
input_ids=input_ids,
|
1294 |
+
attention_mask=attention_mask,
|
1295 |
+
position_ids=position_ids,
|
1296 |
+
past_key_values=past_key_values,
|
1297 |
+
inputs_embeds=inputs_embeds,
|
1298 |
+
use_cache=use_cache,
|
1299 |
+
output_attentions=output_attentions,
|
1300 |
+
output_hidden_states=output_hidden_states,
|
1301 |
+
return_dict=return_dict,
|
1302 |
+
use_rmpad=use_rmpad,
|
1303 |
+
cu_seqlens=cu_seqlens,
|
1304 |
+
)
|
1305 |
+
|
1306 |
+
hidden_states = outputs[0]
|
1307 |
+
logits = self.lm_head(hidden_states)
|
1308 |
+
|
1309 |
+
if not return_dict:
|
1310 |
+
output = (logits,) + outputs[1:]
|
1311 |
+
return output
|
1312 |
+
|
1313 |
+
return Qwen2VLCausalLMOutputWithPast(
|
1314 |
+
logits=logits,
|
1315 |
+
past_key_values=outputs.past_key_values,
|
1316 |
+
hidden_states=outputs.hidden_states,
|
1317 |
+
attentions=outputs.attentions,
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
|
models/modeling_tarsier.py
CHANGED
@@ -1,100 +1,30 @@
|
|
1 |
-
# Copyright (2024) Bytedance Ltd. and/or its affiliates
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
# copy and modify from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
16 |
-
""" PyTorch Llava model."""
|
17 |
from dataclasses import dataclass
|
18 |
-
from typing import List, Optional, Tuple, Union
|
19 |
import math
|
20 |
-
import numpy as np
|
21 |
|
22 |
-
import torch
|
23 |
import torch.utils.checkpoint
|
24 |
from torch import nn
|
25 |
import torch.nn.functional as F
|
26 |
|
27 |
-
from transformers import PreTrainedModel
|
28 |
from transformers.activations import ACT2FN
|
29 |
from transformers.cache_utils import Cache
|
30 |
from transformers.modeling_outputs import ModelOutput
|
31 |
-
from transformers.utils import
|
32 |
-
add_start_docstrings,
|
33 |
-
add_start_docstrings_to_model_forward,
|
34 |
-
logging,
|
35 |
-
replace_return_docstrings,
|
36 |
-
)
|
37 |
-
from transformers.models.auto import AutoModel, AutoModelForCausalLM, CONFIG_MAPPING
|
38 |
-
from transformers import LlamaForCausalLM
|
39 |
from transformers.configuration_utils import PretrainedConfig
|
|
|
|
|
|
|
40 |
|
|
|
|
|
|
|
|
|
41 |
|
42 |
logger = logging.get_logger(__name__)
|
43 |
|
44 |
-
LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
45 |
-
"llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json",
|
46 |
-
}
|
47 |
|
48 |
class LlavaConfig(PretrainedConfig):
|
49 |
-
r"""
|
50 |
-
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an
|
51 |
-
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
52 |
-
with the defaults will yield a similar configuration to that of the Llava-9B.
|
53 |
-
|
54 |
-
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b)
|
55 |
-
|
56 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
57 |
-
documentation from [`PretrainedConfig`] for more information.
|
58 |
-
|
59 |
-
Args:
|
60 |
-
vision_config (`LlavaVisionConfig`, *optional*):
|
61 |
-
Custom vision config or dict
|
62 |
-
text_config (`Union[AutoConfig, dict]`, *optional*):
|
63 |
-
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
|
64 |
-
ignore_index (`int`, *optional*, defaults to -100):
|
65 |
-
The ignore index for the loss function.
|
66 |
-
image_token_index (`int`, *optional*, defaults to 32000):
|
67 |
-
The image token index to encode the image prompt.
|
68 |
-
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
|
69 |
-
The activation function used by the multimodal projector.
|
70 |
-
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
|
71 |
-
The feature selection strategy used to select the vision feature from the CLIP backbone.
|
72 |
-
vision_feature_layer (`int`, *optional*, defaults to -2):
|
73 |
-
The index of the layer to select the vision feature.
|
74 |
-
vocab_size (`int`, *optional*, defaults to 32000):
|
75 |
-
Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the
|
76 |
-
`inputs_ids` passed when calling [`~LlavaForConditionalGeneration`]
|
77 |
-
|
78 |
-
Example:
|
79 |
-
|
80 |
-
```python
|
81 |
-
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig
|
82 |
-
|
83 |
-
>>> # Initializing a CLIP-vision config
|
84 |
-
>>> vision_config = CLIPVisionConfig()
|
85 |
-
|
86 |
-
>>> # Initializing a Llama config
|
87 |
-
>>> text_config = LlamaConfig()
|
88 |
-
|
89 |
-
>>> # Initializing a Llava llava-1.5-7b style configuration
|
90 |
-
>>> configuration = LlavaConfig(vision_config, text_config)
|
91 |
-
|
92 |
-
>>> # Initializing a model from the llava-1.5-7b style configuration
|
93 |
-
>>> model = LlavaForConditionalGeneration(configuration)
|
94 |
-
|
95 |
-
>>> # Accessing the model configuration
|
96 |
-
>>> configuration = model.config
|
97 |
-
```"""
|
98 |
|
99 |
model_type = "llava"
|
100 |
is_composition = False
|
@@ -108,9 +38,9 @@ class LlavaConfig(PretrainedConfig):
|
|
108 |
projector_hidden_act="gelu",
|
109 |
vision_feature_select_strategy="default",
|
110 |
vision_feature_layer=-2,
|
111 |
-
vocab_size=32000,
|
112 |
image_newline_idx=32002,
|
113 |
image_new_idx=32003,
|
|
|
114 |
**kwargs,
|
115 |
):
|
116 |
self.ignore_index = ignore_index
|
@@ -118,9 +48,9 @@ class LlavaConfig(PretrainedConfig):
|
|
118 |
self.projector_hidden_act = projector_hidden_act
|
119 |
self.vision_feature_select_strategy = vision_feature_select_strategy
|
120 |
self.vision_feature_layer = vision_feature_layer
|
121 |
-
self.vocab_size = vocab_size
|
122 |
self.image_newline_idx = image_newline_idx
|
123 |
self.image_new_idx = image_new_idx
|
|
|
124 |
|
125 |
self.vision_config = vision_config
|
126 |
|
@@ -128,142 +58,166 @@ class LlavaConfig(PretrainedConfig):
|
|
128 |
vision_config["model_type"] = (
|
129 |
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
|
130 |
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
vocab_size=32000,
|
141 |
-
projection_dim=768,
|
142 |
-
)
|
143 |
-
self.vocab_size = self.vocab_size
|
144 |
-
|
145 |
self.text_config = text_config
|
146 |
|
147 |
if isinstance(self.text_config, dict):
|
148 |
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
super().__init__(**kwargs)
|
155 |
|
156 |
|
157 |
-
logger = logging.get_logger(__name__)
|
158 |
-
|
159 |
-
_CONFIG_FOR_DOC = "LlavaConfig"
|
160 |
-
|
161 |
-
LLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
162 |
-
"llava-hf/llava-1.5-7b-hf",
|
163 |
-
"llava-hf/llava-1.5-13b-hf",
|
164 |
-
"llava-hf/bakLlava-v1-hf",
|
165 |
-
# See all Llava models at https://huggingface.co/models?filter=llava
|
166 |
-
]
|
167 |
-
|
168 |
-
|
169 |
-
class Llava3DPositionalEncoding(nn.Module):
|
170 |
-
def __init__(self, num_pos, dim) -> None:
|
171 |
-
super().__init__()
|
172 |
-
dim1, dim2, dim3 = self.split_dim(dim)
|
173 |
-
frame_position_encodings = self.create_sinusoidal_positions(num_pos, dim1)
|
174 |
-
height_position_encodings = self.create_sinusoidal_positions(num_pos, dim2)
|
175 |
-
width_position_encodings = self.create_sinusoidal_positions(num_pos, dim3)
|
176 |
-
|
177 |
-
self.register_buffer('frame_position_encodings', frame_position_encodings, persistent=False)
|
178 |
-
self.register_buffer('height_position_encodings', height_position_encodings, persistent=False)
|
179 |
-
self.register_buffer('width_position_encodings', width_position_encodings, persistent=False)
|
180 |
-
|
181 |
-
def split_dim(self, dim):
|
182 |
-
dim1 = dim // 3
|
183 |
-
if dim1 % 2 != 0:
|
184 |
-
dim1 -= 1
|
185 |
-
|
186 |
-
dim2 = dim // 3
|
187 |
-
if dim2 % 2 != 0:
|
188 |
-
dim2 -= 1
|
189 |
-
|
190 |
-
dim3 = dim - dim1 - dim2
|
191 |
-
return dim1, dim2, dim3
|
192 |
-
|
193 |
-
def create_sinusoidal_positions(self, num_pos: int, dim: int) -> torch.Tensor:
|
194 |
-
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
195 |
-
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.float), inv_freq).float()
|
196 |
-
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
197 |
-
|
198 |
-
def forward(self, frame_position_ids, height_position_ids, width_position_ids):
|
199 |
-
frame_position_embeds = F.embedding(frame_position_ids, self.frame_position_encodings)
|
200 |
-
height_position_embeds = F.embedding(height_position_ids, self.height_position_encodings)
|
201 |
-
width_position_embeds = F.embedding(width_position_ids, self.width_position_encodings)
|
202 |
-
|
203 |
-
return torch.cat([frame_position_embeds, height_position_embeds, width_position_embeds], dim = -1)
|
204 |
-
|
205 |
|
206 |
@dataclass
|
207 |
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
|
208 |
class LlavaCausalLMOutputWithPast(ModelOutput):
|
209 |
-
"""
|
210 |
-
Base class for Llava causal language model (or autoregressive) outputs.
|
211 |
-
|
212 |
-
Args:
|
213 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
214 |
-
Language modeling loss (for next-token prediction).
|
215 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
216 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
217 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
218 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
219 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
220 |
-
|
221 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
222 |
-
`past_key_values` input) to speed up sequential decoding.
|
223 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
224 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
225 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
226 |
-
|
227 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
228 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
229 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
230 |
-
sequence_length)`.
|
231 |
-
|
232 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
233 |
-
heads.
|
234 |
-
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
235 |
-
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
236 |
-
sequence_length, hidden_size)`.
|
237 |
-
|
238 |
-
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
239 |
-
"""
|
240 |
|
241 |
loss: Optional[torch.FloatTensor] = None
|
242 |
logits: torch.FloatTensor = None
|
243 |
past_key_values: Optional[List[torch.FloatTensor]] = None
|
244 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
245 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
246 |
-
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
|
251 |
class LlavaMultiModalProjector(nn.Module):
|
252 |
def __init__(self, config: LlavaConfig):
|
253 |
super().__init__()
|
|
|
254 |
|
255 |
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
256 |
self.act = ACT2FN[config.projector_hidden_act]
|
257 |
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
258 |
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
hidden_states = self.act(hidden_states)
|
262 |
hidden_states = self.linear_2(hidden_states)
|
|
|
|
|
|
|
|
|
263 |
return hidden_states
|
264 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
268 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
269 |
etc.)
|
@@ -279,23 +233,17 @@ TARSIER_START_DOCSTRING = r"""
|
|
279 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
280 |
"""
|
281 |
|
282 |
-
|
283 |
-
@add_start_docstrings(
|
284 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
285 |
-
TARSIER_START_DOCSTRING,
|
286 |
-
)
|
287 |
class TarsierPreTrainedModel(PreTrainedModel):
|
288 |
config_class = LlavaConfig
|
289 |
-
base_model_prefix = "
|
290 |
-
supports_gradient_checkpointing = True
|
291 |
-
_no_split_modules = ["LlavaVisionAttention"]
|
292 |
_skip_keys_device_placement = "past_key_values"
|
293 |
_supports_flash_attn_2 = True
|
|
|
|
|
|
|
294 |
|
295 |
def _init_weights(self, module):
|
296 |
-
# important: this ported version of Llava isn't meant for training from scratch - only
|
297 |
-
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
|
298 |
-
# https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose
|
299 |
std = (
|
300 |
self.config.initializer_range
|
301 |
if hasattr(self.config, "initializer_range")
|
@@ -305,7 +253,7 @@ class TarsierPreTrainedModel(PreTrainedModel):
|
|
305 |
if hasattr(module, "class_embedding"):
|
306 |
module.class_embedding.data.normal_(mean=0.0, std=std)
|
307 |
|
308 |
-
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
309 |
module.weight.data.normal_(mean=0.0, std=std)
|
310 |
if module.bias is not None:
|
311 |
module.bias.data.zero_()
|
@@ -313,98 +261,39 @@ class TarsierPreTrainedModel(PreTrainedModel):
|
|
313 |
module.weight.data.normal_(mean=0.0, std=std)
|
314 |
if module.padding_idx is not None:
|
315 |
module.weight.data[module.padding_idx].zero_()
|
316 |
-
|
|
|
|
|
|
|
317 |
@property
|
318 |
-
def
|
319 |
-
|
320 |
-
Retrieve language_model's attribute to check whether the model supports
|
321 |
-
SDPA or not.
|
322 |
-
"""
|
323 |
-
return self.language_model._supports_sdpa
|
324 |
-
|
325 |
-
|
326 |
-
TARSIER_INPUTS_DOCSTRING = r"""
|
327 |
-
Args:
|
328 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
329 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
330 |
-
it.
|
331 |
-
|
332 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
333 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
334 |
-
|
335 |
-
[What are input IDs?](../glossary#input-ids)
|
336 |
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
|
337 |
-
The tensors corresponding to the input images. Pixel values can be obtained using
|
338 |
-
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses
|
339 |
-
[`CLIPImageProcessor`] for processing images).
|
340 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
341 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
342 |
-
|
343 |
-
- 1 for tokens that are **not masked**,
|
344 |
-
- 0 for tokens that are **masked**.
|
345 |
-
|
346 |
-
[What are attention masks?](../glossary#attention-mask)
|
347 |
-
|
348 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
349 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
350 |
-
|
351 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
352 |
-
`past_key_values`).
|
353 |
-
|
354 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
355 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
356 |
-
information on the default strategy.
|
357 |
-
|
358 |
-
- 1 indicates the head is **not masked**,
|
359 |
-
- 0 indicates the head is **masked**.
|
360 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
361 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
362 |
-
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
363 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
364 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
365 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
366 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
367 |
-
|
368 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
369 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
370 |
-
|
371 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
372 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
373 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
374 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
375 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
376 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
377 |
-
model's internal embedding lookup matrix.
|
378 |
-
use_cache (`bool`, *optional*):
|
379 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
380 |
-
`past_key_values`).
|
381 |
-
output_attentions (`bool`, *optional*):
|
382 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
383 |
-
tensors for more detail.
|
384 |
-
output_hidden_states (`bool`, *optional*):
|
385 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
386 |
-
more detail.
|
387 |
-
return_dict (`bool`, *optional*):
|
388 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
389 |
-
"""
|
390 |
|
391 |
|
392 |
-
|
393 |
-
"""The LLAVA model which consists of a vision backbone and a language model.""",
|
394 |
-
TARSIER_INPUTS_DOCSTRING,
|
395 |
-
)
|
396 |
-
class TarsierForConditionalGeneration(TarsierPreTrainedModel):
|
397 |
def __init__(self, config: LlavaConfig):
|
398 |
super().__init__(config)
|
399 |
self.vision_tower = AutoModel.from_config(config.vision_config, trust_remote_code=True)
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
self.post_init()
|
409 |
|
410 |
def get_input_embeddings(self):
|
@@ -432,231 +321,81 @@ class TarsierForConditionalGeneration(TarsierPreTrainedModel):
|
|
432 |
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
433 |
# update vocab size
|
434 |
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
435 |
-
self.config.vocab_size = model_embeds.num_embeddings
|
436 |
-
self.vocab_size = model_embeds.num_embeddings
|
437 |
return model_embeds
|
438 |
|
439 |
-
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
|
440 |
-
num_images, num_image_patches, embed_dim = image_features.shape
|
441 |
-
|
442 |
-
batch_size, sequence_length = input_ids.shape
|
443 |
-
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
|
444 |
-
# 1. Create a mask to know where special image tokens are
|
445 |
-
special_image_token_mask = input_ids == self.config.image_token_index
|
446 |
-
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
447 |
-
# Compute the maximum embed dimension
|
448 |
-
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
449 |
-
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
|
450 |
-
|
451 |
-
# 2. Compute the positions where text should be written
|
452 |
-
# Calculate new positions for text tokens in merged image-text sequence.
|
453 |
-
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
454 |
-
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
455 |
-
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
456 |
-
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
457 |
-
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
458 |
-
if left_padding:
|
459 |
-
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
460 |
-
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
461 |
-
|
462 |
-
# 3. Create the full embedding, already padded to the maximum position
|
463 |
-
final_embedding = torch.zeros(
|
464 |
-
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
465 |
-
)
|
466 |
-
final_attention_mask = torch.zeros(
|
467 |
-
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
|
468 |
-
)
|
469 |
-
if labels is not None:
|
470 |
-
final_labels = torch.full(
|
471 |
-
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
|
472 |
-
)
|
473 |
-
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
474 |
-
# set the corresponding tensors into their correct target device.
|
475 |
-
target_device = inputs_embeds.device
|
476 |
-
batch_indices, non_image_indices, text_to_overwrite = (
|
477 |
-
batch_indices.to(target_device),
|
478 |
-
non_image_indices.to(target_device),
|
479 |
-
text_to_overwrite.to(target_device),
|
480 |
-
)
|
481 |
-
attention_mask = attention_mask.to(target_device)
|
482 |
-
|
483 |
-
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
484 |
-
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
485 |
-
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
486 |
-
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
487 |
-
if labels is not None:
|
488 |
-
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
|
489 |
-
|
490 |
-
# 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling
|
491 |
-
image_to_overwrite = torch.all(final_embedding == 0, dim=-1)
|
492 |
-
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
|
493 |
-
|
494 |
-
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
495 |
-
raise ValueError(
|
496 |
-
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
497 |
-
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
498 |
-
)
|
499 |
-
|
500 |
-
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
501 |
-
final_attention_mask |= image_to_overwrite
|
502 |
-
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
|
503 |
-
|
504 |
-
if labels is None:
|
505 |
-
final_labels = None
|
506 |
-
|
507 |
-
return final_embedding, final_attention_mask, final_labels, position_ids
|
508 |
-
|
509 |
-
def add_split_tokens(self, image_features):
|
510 |
-
num_images, num_image_patches, embed_dim = image_features.shape
|
511 |
-
num_height_patches, num_width_patches = int(math.sqrt(num_image_patches)), int(math.sqrt(num_image_patches))
|
512 |
-
|
513 |
-
# add image_newline
|
514 |
-
image_newline = self.get_input_embeddings()(self.image_newline_idx).squeeze()
|
515 |
-
image_features = image_features.view(num_images, num_height_patches, num_width_patches, embed_dim)
|
516 |
-
image_features = torch.cat([
|
517 |
-
image_features,
|
518 |
-
image_newline.expand((num_images, num_height_patches, 1, embed_dim)).to(device=image_features.device)
|
519 |
-
], dim=2)
|
520 |
-
num_image_patches += num_height_patches
|
521 |
-
image_features = image_features.view(num_images, num_image_patches, embed_dim)
|
522 |
-
|
523 |
-
# add image_new
|
524 |
-
image_new = self.get_input_embeddings()(self.image_new_idx).squeeze()
|
525 |
-
image_features = torch.cat([
|
526 |
-
image_features,
|
527 |
-
image_new.expand((num_images, 1, embed_dim)).to(device=image_features.device)
|
528 |
-
], dim = 1)
|
529 |
-
|
530 |
-
return image_features
|
531 |
-
|
532 |
-
@add_start_docstrings_to_model_forward(TARSIER_INPUTS_DOCSTRING)
|
533 |
-
@replace_return_docstrings(output_type=LlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
534 |
def forward(
|
535 |
self,
|
536 |
input_ids: torch.LongTensor = None,
|
537 |
-
pixel_values: torch.FloatTensor = None,
|
538 |
attention_mask: Optional[torch.Tensor] = None,
|
539 |
position_ids: Optional[torch.LongTensor] = None,
|
|
|
|
|
540 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
541 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
542 |
-
vision_feature_layer: Optional[int] = None,
|
543 |
-
vision_feature_select_strategy: Optional[str] = None,
|
544 |
labels: Optional[torch.LongTensor] = None,
|
|
|
545 |
use_cache: Optional[bool] = None,
|
546 |
output_attentions: Optional[bool] = None,
|
547 |
output_hidden_states: Optional[bool] = None,
|
548 |
return_dict: Optional[bool] = None,
|
|
|
549 |
**kwargs,
|
550 |
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
551 |
-
|
552 |
-
Args:
|
553 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
554 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
555 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
556 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
557 |
-
|
558 |
-
Returns:
|
559 |
-
|
560 |
-
Example:
|
561 |
-
|
562 |
-
```python
|
563 |
-
>>> from PIL import Image
|
564 |
-
>>> import requests
|
565 |
-
>>> from transformers import AutoProcessor, LlavaForConditionalGeneration
|
566 |
-
|
567 |
-
>>> model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
568 |
-
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
569 |
-
|
570 |
-
>>> prompt = "<image>\nUSER: What's the content of the image?\nASSISTANT:"
|
571 |
-
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
572 |
-
>>> image = Image.open(requests.get(url, stream=True).raw)
|
573 |
-
|
574 |
-
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
575 |
-
|
576 |
-
>>> # Generate
|
577 |
-
>>> generate_ids = model.generate(**inputs, max_length=30)
|
578 |
-
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
579 |
-
"\nUSER: What's the content of the image?\nASSISTANT: The image features a stop sign on a street corner"
|
580 |
-
```"""
|
581 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
582 |
output_hidden_states = (
|
583 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
584 |
)
|
585 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
|
|
|
|
|
595 |
image_features = None
|
596 |
-
if
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
if pixel_values is not None and input_ids.shape[1] != 1:
|
602 |
-
pixel_values = pixel_values.to(dtype=self.vision_tower.dtype)
|
603 |
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
image_features = self.multi_modal_projector(selected_image_feature)
|
617 |
-
|
618 |
-
special_image_token_mask = input_ids == self.config.image_token_index
|
619 |
-
num_special_image_tokens = torch.sum(special_image_token_mask, dim = -1)
|
620 |
-
|
621 |
-
image_features = self.add_split_tokens(image_features)
|
622 |
-
|
623 |
-
if sum(num_special_image_tokens) > 0:
|
624 |
-
# print(f'num_special_image_tokens: {num_special_image_tokens}')
|
625 |
-
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
|
626 |
-
image_features, inputs_embeds, input_ids, attention_mask, labels
|
627 |
-
)
|
628 |
-
else:
|
629 |
-
inputs_embeds = image_features.sum(dim=(0,1))[None, None, :] * 0. + inputs_embeds
|
630 |
-
|
631 |
-
if labels is None:
|
632 |
-
labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long)
|
633 |
else:
|
634 |
-
|
635 |
-
|
636 |
-
if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
|
637 |
-
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
638 |
-
# that are set to 0
|
639 |
-
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
640 |
-
|
641 |
-
# Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
642 |
-
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
|
643 |
-
|
644 |
-
# Get the target length
|
645 |
-
target_seqlen = first_layer_past_key_value.shape[-1] + 1
|
646 |
-
extended_attention_mask = torch.ones(
|
647 |
-
(attention_mask.shape[0], target_seqlen),
|
648 |
-
dtype=attention_mask.dtype,
|
649 |
-
device=attention_mask.device,
|
650 |
-
)
|
651 |
-
|
652 |
-
extended_attention_mask[batch_index, non_attended_tokens] = 0
|
653 |
-
|
654 |
-
valid_indices = torch.ones_like(attention_mask)
|
655 |
-
valid_indices[:, 0] = target_seqlen - extended_attention_mask.sum(dim=-1)
|
656 |
-
valid_indices = torch.cumsum(valid_indices, dim=-1)
|
657 |
-
extended_attention_mask = extended_attention_mask.scatter(1, valid_indices, attention_mask)
|
658 |
-
attention_mask = extended_attention_mask
|
659 |
-
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
660 |
outputs = self.language_model(
|
661 |
attention_mask=attention_mask,
|
662 |
position_ids=position_ids,
|
@@ -665,27 +404,35 @@ class TarsierForConditionalGeneration(TarsierPreTrainedModel):
|
|
665 |
use_cache=use_cache,
|
666 |
output_attentions=output_attentions,
|
667 |
output_hidden_states=output_hidden_states,
|
668 |
-
# use_rmpad=kwargs.get("use_rmpad", False),
|
669 |
return_dict=return_dict,
|
|
|
|
|
670 |
)
|
671 |
|
672 |
logits = outputs[0]
|
673 |
|
674 |
loss = None
|
675 |
if labels is not None:
|
676 |
-
|
677 |
-
if
|
678 |
-
|
679 |
-
|
680 |
-
shift_labels =
|
|
|
|
|
|
|
681 |
else:
|
|
|
682 |
shift_logits = logits[..., :-1, :].contiguous()
|
683 |
shift_labels = labels[..., 1:].contiguous()
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
|
|
|
|
|
|
689 |
|
690 |
if not return_dict:
|
691 |
output = (logits,) + outputs[1:]
|
@@ -697,61 +444,59 @@ class TarsierForConditionalGeneration(TarsierPreTrainedModel):
|
|
697 |
past_key_values=outputs.past_key_values,
|
698 |
hidden_states=outputs.hidden_states,
|
699 |
attentions=outputs.attentions,
|
700 |
-
|
701 |
)
|
702 |
|
703 |
def prepare_inputs_for_generation(
|
704 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
705 |
):
|
706 |
if past_key_values is not None:
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
#
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
elif self.config.image_token_index in input_ids:
|
725 |
-
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
726 |
-
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
727 |
-
# older attention values, as their corresponding values are not part of the input.
|
728 |
-
if cache_length < past_length and attention_mask is not None:
|
729 |
-
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :]
|
730 |
-
|
731 |
-
position_ids = kwargs.get("position_ids", None)
|
732 |
-
if attention_mask is not None and position_ids is None:
|
733 |
-
# create position_ids on the fly for batch generation
|
734 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
735 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
736 |
-
if past_key_values:
|
737 |
-
position_ids = position_ids[:, -input_ids.shape[1] :]
|
738 |
-
|
739 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
740 |
-
if inputs_embeds is not None and past_key_values is None:
|
741 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
742 |
else:
|
743 |
-
model_inputs =
|
744 |
-
|
745 |
-
model_inputs.update(
|
746 |
-
{
|
747 |
-
"position_ids": position_ids,
|
748 |
-
"past_key_values": past_key_values,
|
749 |
-
"use_cache": kwargs.get("use_cache"),
|
750 |
-
"attention_mask": attention_mask,
|
751 |
-
"pixel_values": pixel_values,
|
752 |
-
}
|
753 |
-
)
|
754 |
return model_inputs
|
755 |
|
756 |
-
|
757 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
3 |
import math
|
|
|
4 |
|
|
|
5 |
import torch.utils.checkpoint
|
6 |
from torch import nn
|
7 |
import torch.nn.functional as F
|
8 |
|
9 |
+
from transformers import PreTrainedModel, AutoConfig, AutoModel
|
10 |
from transformers.activations import ACT2FN
|
11 |
from transformers.cache_utils import Cache
|
12 |
from transformers.modeling_outputs import ModelOutput
|
13 |
+
from transformers.utils import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from transformers.configuration_utils import PretrainedConfig
|
15 |
+
from transformers.dynamic_module_utils import get_class_from_dynamic_module
|
16 |
+
from transformers.models.auto import AutoModel, AutoModelForCausalLM, CONFIG_MAPPING
|
17 |
+
from transformers.generation import GenerationMixin
|
18 |
|
19 |
+
from transformers import LlamaForCausalLM, Qwen2ForCausalLM
|
20 |
+
# from models.modeling_qwen2 import Qwen2ForCausalLM
|
21 |
+
from models.modeling_qwen2_vl_fast import Qwen2VLForCausalLM
|
22 |
+
from models.utils import _pad_input, _unpad_input
|
23 |
|
24 |
logger = logging.get_logger(__name__)
|
25 |
|
|
|
|
|
|
|
26 |
|
27 |
class LlavaConfig(PretrainedConfig):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
model_type = "llava"
|
30 |
is_composition = False
|
|
|
38 |
projector_hidden_act="gelu",
|
39 |
vision_feature_select_strategy="default",
|
40 |
vision_feature_layer=-2,
|
|
|
41 |
image_newline_idx=32002,
|
42 |
image_new_idx=32003,
|
43 |
+
projection_head="MLP",
|
44 |
**kwargs,
|
45 |
):
|
46 |
self.ignore_index = ignore_index
|
|
|
48 |
self.projector_hidden_act = projector_hidden_act
|
49 |
self.vision_feature_select_strategy = vision_feature_select_strategy
|
50 |
self.vision_feature_layer = vision_feature_layer
|
|
|
51 |
self.image_newline_idx = image_newline_idx
|
52 |
self.image_new_idx = image_new_idx
|
53 |
+
self.projection_head = projection_head
|
54 |
|
55 |
self.vision_config = vision_config
|
56 |
|
|
|
58 |
vision_config["model_type"] = (
|
59 |
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
|
60 |
)
|
61 |
+
if 'auto_map' in vision_config:
|
62 |
+
repo_id, class_ref = vision_config['auto_map']['AutoConfig'].split("--")
|
63 |
+
config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
|
64 |
+
self.vision_config = config_class(**vision_config)
|
65 |
+
elif vision_config["model_type"] in CONFIG_MAPPING:
|
66 |
+
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
|
67 |
+
else:
|
68 |
+
raise ValueError(f'vision_config["model_type"] = {vision_config["model_type"]} not supported!')
|
69 |
+
|
|
|
|
|
|
|
|
|
|
|
70 |
self.text_config = text_config
|
71 |
|
72 |
if isinstance(self.text_config, dict):
|
73 |
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
|
74 |
+
if 'auto_map' in text_config:
|
75 |
+
repo_id, class_ref = text_config['auto_map']['AutoConfig'].split("--")
|
76 |
+
config_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
|
77 |
+
self.text_config = config_class(**text_config)
|
78 |
+
elif text_config["model_type"] in CONFIG_MAPPING:
|
79 |
+
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
|
80 |
+
else:
|
81 |
+
raise ValueError(f'text_config["model_type"] = {text_config["model_type"]} not supported!')
|
82 |
+
|
83 |
|
84 |
super().__init__(**kwargs)
|
85 |
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
@dataclass
|
89 |
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Llava
|
90 |
class LlavaCausalLMOutputWithPast(ModelOutput):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
loss: Optional[torch.FloatTensor] = None
|
93 |
logits: torch.FloatTensor = None
|
94 |
past_key_values: Optional[List[torch.FloatTensor]] = None
|
95 |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
96 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
97 |
+
position_ids: Optional[torch.LongTensor] = None
|
98 |
+
|
99 |
+
def add_split_tokens(image_features, image_newline_embed, image_new_embed):
|
100 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
101 |
+
num_height_patches, num_width_patches = int(math.sqrt(num_image_patches)), int(math.sqrt(num_image_patches))
|
102 |
+
|
103 |
+
# add image_newline
|
104 |
+
image_features = image_features.view(num_images, num_height_patches, num_width_patches, embed_dim)
|
105 |
+
image_features = torch.cat([
|
106 |
+
image_features,
|
107 |
+
image_newline_embed.expand((num_images, num_height_patches, 1, embed_dim))
|
108 |
+
], dim=2)
|
109 |
+
num_image_patches += num_height_patches
|
110 |
+
image_features = image_features.view(num_images, num_image_patches, embed_dim)
|
111 |
+
|
112 |
+
# add image_new
|
113 |
+
image_features = torch.cat([
|
114 |
+
image_features,
|
115 |
+
image_new_embed.expand((num_images, 1, embed_dim))
|
116 |
+
], dim = 1)
|
117 |
+
|
118 |
+
return image_features
|
119 |
|
120 |
|
121 |
class LlavaMultiModalProjector(nn.Module):
|
122 |
def __init__(self, config: LlavaConfig):
|
123 |
super().__init__()
|
124 |
+
self.config = config
|
125 |
|
126 |
self.linear_1 = nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
|
127 |
self.act = ACT2FN[config.projector_hidden_act]
|
128 |
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
|
129 |
|
130 |
+
image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long)
|
131 |
+
image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long)
|
132 |
+
self.register_buffer('image_newline_idx', image_newline_idx, persistent=False)
|
133 |
+
self.register_buffer('image_new_idx', image_new_idx, persistent=False)
|
134 |
+
|
135 |
+
|
136 |
+
def forward(self, image_features, input_embeddings):
|
137 |
+
|
138 |
+
selected_image_feature = image_features[self.config.vision_feature_layer]
|
139 |
+
|
140 |
+
if self.config.vision_feature_select_strategy == "default":
|
141 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
142 |
+
elif self.config.vision_feature_select_strategy == "full":
|
143 |
+
selected_image_feature = selected_image_feature
|
144 |
+
else:
|
145 |
+
raise ValueError(
|
146 |
+
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
147 |
+
)
|
148 |
+
|
149 |
+
hidden_states = self.linear_1(selected_image_feature)
|
150 |
hidden_states = self.act(hidden_states)
|
151 |
hidden_states = self.linear_2(hidden_states)
|
152 |
+
|
153 |
+
image_newline_embed = input_embeddings(self.image_newline_idx).squeeze()
|
154 |
+
image_new_embed = input_embeddings(self.image_new_idx).squeeze()
|
155 |
+
hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed)
|
156 |
return hidden_states
|
157 |
|
158 |
+
class PixelShuffleMultiModalProjector(nn.Module):
|
159 |
+
def __init__(self, config: LlavaConfig):
|
160 |
+
super().__init__()
|
161 |
+
self.config = config
|
162 |
+
|
163 |
+
self.downsample_ratio = 0.5
|
164 |
+
vit_hidden_size = config.vision_config.hidden_size
|
165 |
+
llm_hidden_size = config.text_config.hidden_size
|
166 |
+
|
167 |
+
self.mlp = nn.Sequential(
|
168 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
169 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
170 |
+
nn.GELU(),
|
171 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
172 |
+
)
|
173 |
|
174 |
+
image_newline_idx = torch.tensor([config.image_newline_idx], dtype=torch.long)
|
175 |
+
image_new_idx = torch.tensor([config.image_new_idx], dtype=torch.long)
|
176 |
+
self.register_buffer('image_newline_idx', image_newline_idx, persistent=False)
|
177 |
+
self.register_buffer('image_new_idx', image_new_idx, persistent=False)
|
178 |
+
|
179 |
+
def forward(self, image_features, input_embeddings):
|
180 |
+
selected_image_feature = image_features[self.config.vision_feature_layer]
|
181 |
+
|
182 |
+
if self.config.vision_feature_select_strategy == "default":
|
183 |
+
selected_image_feature = selected_image_feature[:, 1:]
|
184 |
+
elif self.config.vision_feature_select_strategy == "full":
|
185 |
+
selected_image_feature = selected_image_feature
|
186 |
+
else:
|
187 |
+
raise ValueError(
|
188 |
+
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
189 |
+
)
|
190 |
+
|
191 |
+
image_features = self.pixel_shuffle(selected_image_feature)
|
192 |
+
hidden_states = self.mlp(image_features)
|
193 |
+
|
194 |
+
image_newline_embed = input_embeddings(self.image_newline_idx).squeeze()
|
195 |
+
image_new_embed = input_embeddings(self.image_new_idx).squeeze()
|
196 |
+
hidden_states = add_split_tokens(hidden_states, image_newline_embed, image_new_embed)
|
197 |
+
|
198 |
+
return hidden_states
|
199 |
+
|
200 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
201 |
+
if scale_factor == 1:
|
202 |
+
return x
|
203 |
+
n, wh, c = x.shape
|
204 |
+
h, w = int(math.sqrt(wh)), int(math.sqrt(wh))
|
205 |
+
x = x.view(n, h, w, c)
|
206 |
+
|
207 |
+
n, w, h, c = x.size()
|
208 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
209 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
210 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
211 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
212 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
213 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
214 |
+
int(c / (scale_factor * scale_factor)))
|
215 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
216 |
+
x = x.view(x.shape[0], -1, x.shape[-1])
|
217 |
+
return x
|
218 |
+
|
219 |
+
|
220 |
+
LLAVA_START_DOCSTRING = r"""
|
221 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
222 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
223 |
etc.)
|
|
|
233 |
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
234 |
"""
|
235 |
|
|
|
|
|
|
|
|
|
|
|
236 |
class TarsierPreTrainedModel(PreTrainedModel):
|
237 |
config_class = LlavaConfig
|
238 |
+
base_model_prefix = "llm"
|
239 |
+
supports_gradient_checkpointing = True # TODO: support latest gc
|
|
|
240 |
_skip_keys_device_placement = "past_key_values"
|
241 |
_supports_flash_attn_2 = True
|
242 |
+
_supports_sdpa = False
|
243 |
+
_supports_cache_class = True # TODO: support different cache
|
244 |
+
_supports_static_cache = True
|
245 |
|
246 |
def _init_weights(self, module):
|
|
|
|
|
|
|
247 |
std = (
|
248 |
self.config.initializer_range
|
249 |
if hasattr(self.config, "initializer_range")
|
|
|
253 |
if hasattr(module, "class_embedding"):
|
254 |
module.class_embedding.data.normal_(mean=0.0, std=std)
|
255 |
|
256 |
+
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
|
257 |
module.weight.data.normal_(mean=0.0, std=std)
|
258 |
if module.bias is not None:
|
259 |
module.bias.data.zero_()
|
|
|
261 |
module.weight.data.normal_(mean=0.0, std=std)
|
262 |
if module.padding_idx is not None:
|
263 |
module.weight.data[module.padding_idx].zero_()
|
264 |
+
elif isinstance(module, nn.LayerNorm):
|
265 |
+
module.weight.data.fill_(1.0)
|
266 |
+
if module.bias is not None:
|
267 |
+
module.bias.data.zero_()
|
268 |
@property
|
269 |
+
def _no_split_modules(self):
|
270 |
+
return self.language_model._no_split_modules + self.vision_tower._no_split_modules
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
|
273 |
+
class TarsierForConditionalGeneration(TarsierPreTrainedModel, GenerationMixin):
|
|
|
|
|
|
|
|
|
274 |
def __init__(self, config: LlavaConfig):
|
275 |
super().__init__(config)
|
276 |
self.vision_tower = AutoModel.from_config(config.vision_config, trust_remote_code=True)
|
277 |
+
if config.text_config.model_type == 'qwen2':
|
278 |
+
self.language_model = Qwen2ForCausalLM(config.text_config)
|
279 |
+
elif config.text_config.model_type == 'qwen2_vl':
|
280 |
+
self.language_model = Qwen2VLForCausalLM(config.text_config)
|
281 |
+
elif config.text_config.model_type == 'llama':
|
282 |
+
self.language_model = LlamaForCausalLM(config.text_config)
|
283 |
+
else:
|
284 |
+
raise ValueError(f'{config.text_config.model_type} not supported!')
|
285 |
+
|
286 |
+
if config.projection_head == 'Pixel_Shuffle':
|
287 |
+
self.multi_modal_projector = PixelShuffleMultiModalProjector(config)
|
288 |
+
elif config.projection_head == 'MLP':
|
289 |
+
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
290 |
+
elif config.projection_head == 'auto_map':
|
291 |
+
repo_id, class_ref = config.auto_map['ProjectionLayer'].split("--")
|
292 |
+
model_class = get_class_from_dynamic_module(class_ref, repo_id)
|
293 |
+
self.multi_modal_projector = model_class(config)
|
294 |
+
elif config.projection_head is None:
|
295 |
+
self.multi_modal_projector = lambda x, *args, **kwargs: x
|
296 |
+
|
297 |
self.post_init()
|
298 |
|
299 |
def get_input_embeddings(self):
|
|
|
321 |
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
322 |
# update vocab size
|
323 |
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
|
|
|
|
324 |
return model_embeds
|
325 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
326 |
def forward(
|
327 |
self,
|
328 |
input_ids: torch.LongTensor = None,
|
|
|
329 |
attention_mask: Optional[torch.Tensor] = None,
|
330 |
position_ids: Optional[torch.LongTensor] = None,
|
331 |
+
pixel_values: torch.FloatTensor = None,
|
332 |
+
image_grid_thw: Optional[torch.Tensor] = None,
|
333 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
|
|
|
|
334 |
labels: Optional[torch.LongTensor] = None,
|
335 |
+
num_images: Optional[torch.Tensor] = None,
|
336 |
use_cache: Optional[bool] = None,
|
337 |
output_attentions: Optional[bool] = None,
|
338 |
output_hidden_states: Optional[bool] = None,
|
339 |
return_dict: Optional[bool] = None,
|
340 |
+
use_rmpad: Optional[bool] = False,
|
341 |
**kwargs,
|
342 |
) -> Union[Tuple, LlavaCausalLMOutputWithPast]:
|
343 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
345 |
output_hidden_states = (
|
346 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
347 |
)
|
348 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
349 |
+
|
350 |
+
|
351 |
+
if input_ids is None:
|
352 |
+
raise ValueError("You must specify input_ids")
|
353 |
+
|
354 |
+
bsz, max_seq_len = input_ids.shape[0], input_ids.shape[1]
|
355 |
+
|
356 |
+
if max_seq_len > 1:
|
357 |
+
special_image_mask = input_ids == self.config.image_token_index
|
358 |
+
print(f'[{input_ids.device}] num_images: {num_images.tolist()} num_image_tokens: {special_image_mask.sum(-1).tolist()}', flush=True)
|
359 |
+
|
360 |
+
if position_ids is None:
|
361 |
+
if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__:
|
362 |
+
position_ids = self.language_model.get_rope_index(input_ids, image_grid_thw, attention_mask) # [bsz, seqlen, 3]
|
363 |
+
else:
|
364 |
+
position_ids = attention_mask.long().cumsum(-1) - 1 # # [bsz, seqlen]
|
365 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
366 |
+
|
367 |
+
|
368 |
+
if use_rmpad:
|
369 |
+
input_ids, input_ids_indices, cu_seqlens, _ = _unpad_input(input_ids, attention_mask) # [bsz, seqlen] -> [1, seqlen]
|
370 |
+
position_ids, _, _, _ = _unpad_input(position_ids, attention_mask)
|
371 |
+
input_ids, position_ids = input_ids.unsqueeze(0), position_ids.unsqueeze(0)
|
372 |
+
else:
|
373 |
+
input_ids_indices, cu_seqlens = None, None
|
374 |
|
375 |
+
inputs_embeds = self.get_input_embeddings()(input_ids) # [1, seqlen, dim]
|
376 |
+
|
377 |
image_features = None
|
378 |
+
if pixel_values is not None: # training / first step in generation
|
379 |
+
if 'Qwen2VLForCausalLM' in self.language_model.__class__.__name__:
|
380 |
+
pixel_values = pixel_values.type(self.vision_tower.get_dtype())
|
381 |
+
image_features = self.vision_tower(pixel_values, image_grid_thw)
|
382 |
+
else:
|
|
|
|
|
383 |
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
384 |
+
image_features = self.multi_modal_projector(
|
385 |
+
image_outputs.hidden_states,
|
386 |
+
self.get_input_embeddings(),
|
387 |
+
)
|
388 |
+
|
389 |
+
special_image_mask = input_ids == self.config.image_token_index
|
390 |
+
if special_image_mask.sum() > 0:
|
391 |
+
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
|
392 |
+
inputs_embeds = inputs_embeds.masked_scatter(
|
393 |
+
special_image_mask.unsqueeze(-1).expand_as(inputs_embeds),
|
394 |
+
image_features
|
395 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
else:
|
397 |
+
inputs_embeds = image_features.sum(dim=(0,1)) * 0. + inputs_embeds
|
398 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
outputs = self.language_model(
|
400 |
attention_mask=attention_mask,
|
401 |
position_ids=position_ids,
|
|
|
404 |
use_cache=use_cache,
|
405 |
output_attentions=output_attentions,
|
406 |
output_hidden_states=output_hidden_states,
|
|
|
407 |
return_dict=return_dict,
|
408 |
+
use_rmpad=use_rmpad,
|
409 |
+
cu_seqlens=cu_seqlens,
|
410 |
)
|
411 |
|
412 |
logits = outputs[0]
|
413 |
|
414 |
loss = None
|
415 |
if labels is not None:
|
416 |
+
loss_fct = nn.CrossEntropyLoss()
|
417 |
+
if use_rmpad:
|
418 |
+
labels = labels.view(-1)[input_ids_indices.long()]
|
419 |
+
shift_labels = torch.cat((labels[1:], labels.new_ones((1))*-100))
|
420 |
+
shift_labels.requires_grad = False
|
421 |
+
lbl_seq_lens = (cu_seqlens[1:]-1).long()
|
422 |
+
shift_labels[lbl_seq_lens] = -100
|
423 |
+
loss = loss_fct(logits.squeeze(0), shift_labels)
|
424 |
else:
|
425 |
+
# Shift so that tokens < n predict n
|
426 |
shift_logits = logits[..., :-1, :].contiguous()
|
427 |
shift_labels = labels[..., 1:].contiguous()
|
428 |
+
# Flatten the tokens
|
429 |
+
shift_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
|
430 |
+
shift_labels = shift_labels.view(-1)
|
431 |
+
# Enable model parallelism
|
432 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
433 |
+
loss = loss_fct(shift_logits, shift_labels)
|
434 |
+
elif use_rmpad: # 训练的时候,就不 unpad logits 了,节省显存。
|
435 |
+
logits = _pad_input(logits.squeeze(0), input_ids_indices, bsz, max_seq_len)
|
436 |
|
437 |
if not return_dict:
|
438 |
output = (logits,) + outputs[1:]
|
|
|
444 |
past_key_values=outputs.past_key_values,
|
445 |
hidden_states=outputs.hidden_states,
|
446 |
attentions=outputs.attentions,
|
447 |
+
position_ids=position_ids,
|
448 |
)
|
449 |
|
450 |
def prepare_inputs_for_generation(
|
451 |
+
self,
|
452 |
+
input_ids,
|
453 |
+
attention_mask=None,
|
454 |
+
position_ids=None,
|
455 |
+
past_key_values=None,
|
456 |
+
cache_position=None,
|
457 |
+
use_cache=True,
|
458 |
+
pixel_values=None,
|
459 |
+
image_grid_thw=None,
|
460 |
+
**kwargs,
|
461 |
):
|
462 |
if past_key_values is not None:
|
463 |
+
past_length = past_key_values.get_seq_length()
|
464 |
+
input_ids = input_ids[:, past_length:]
|
465 |
+
|
466 |
+
model_inputs = {
|
467 |
+
"input_ids": input_ids,
|
468 |
+
"attention_mask": attention_mask,
|
469 |
+
"past_key_values": past_key_values,
|
470 |
+
"use_cache": use_cache,
|
471 |
+
}
|
472 |
+
if kwargs.get('num_images') is not None:
|
473 |
+
model_inputs['num_images'] = kwargs['num_images']
|
474 |
+
|
475 |
+
if cache_position[0] == 0:
|
476 |
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
477 |
+
# Otherwise we need pixel values to be passed to model
|
478 |
+
model_inputs["pixel_values"] = pixel_values
|
479 |
+
model_inputs["image_grid_thw"] = image_grid_thw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
else:
|
481 |
+
model_inputs['position_ids'] = position_ids[:, -1, ...].unsqueeze(1).to(device=input_ids.device) + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
return model_inputs
|
483 |
|
484 |
+
|
485 |
+
def _update_model_kwargs_for_generation(
|
486 |
+
self,
|
487 |
+
outputs: ModelOutput,
|
488 |
+
model_kwargs: Dict[str, Any],
|
489 |
+
is_encoder_decoder: bool = False,
|
490 |
+
num_new_tokens: int = 1,
|
491 |
+
) -> Dict[str, Any]:
|
492 |
+
model_kwargs = super()._update_model_kwargs_for_generation(
|
493 |
+
outputs=outputs,
|
494 |
+
model_kwargs=model_kwargs,
|
495 |
+
is_encoder_decoder=is_encoder_decoder,
|
496 |
+
num_new_tokens=num_new_tokens,
|
497 |
+
)
|
498 |
+
|
499 |
+
if getattr(outputs, "position_ids", None) is not None:
|
500 |
+
model_kwargs["position_ids"] = outputs.position_ids
|
501 |
+
|
502 |
+
return model_kwargs
|
models/utils.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from einops import rearrange
|
4 |
+
|
5 |
+
def _unpad_input(input_ids, attention_mask):
|
6 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
7 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
8 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
9 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
10 |
+
input_ids = rearrange(input_ids, 'b s ... -> (b s) ...')[indices]
|
11 |
+
return input_ids, indices, cu_seqlens, max_seqlen_in_batch
|
12 |
+
|
13 |
+
def _pad_input(hidden_states, indices, batch, seqlen):
|
14 |
+
output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
|
15 |
+
dtype=hidden_states.dtype)
|
16 |
+
output[indices] = hidden_states
|
17 |
+
return rearrange(output, '(b s) ... -> b s ...', b=batch)
|
requirements.txt
CHANGED
@@ -19,5 +19,6 @@ torch==2.1.0
|
|
19 |
torchvision==0.16.0
|
20 |
torchaudio==2.1.0
|
21 |
https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.7/flash_attn-2.5.7+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
22 |
-
transformers==4.
|
23 |
triton==2.1.0
|
|
|
|
19 |
torchvision==0.16.0
|
20 |
torchaudio==2.1.0
|
21 |
https://github.com/Dao-AILab/flash-attention/releases/download/v2.5.7/flash_attn-2.5.7+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
22 |
+
transformers==4.47.0
|
23 |
triton==2.1.0
|
24 |
+
func_timeout==4.3.5
|
tools/color.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (2024) Bytedance Ltd. and/or its affiliates
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
class Color:
|
15 |
+
|
16 |
+
@staticmethod
|
17 |
+
def red(x):
|
18 |
+
return '\33[31m' +x + '\033[0m'
|
19 |
+
|
20 |
+
@staticmethod
|
21 |
+
def green(x):
|
22 |
+
return '\33[32m' +x + '\033[0m'
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def yellow(x):
|
26 |
+
return '\33[33m' +x + '\033[0m'
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def blue(x):
|
30 |
+
return '\33[34m' +x + '\033[0m'
|
31 |
+
|
32 |
+
@staticmethod
|
33 |
+
def violet(x):
|
34 |
+
return '\33[35m' +x + '\033[0m'
|
35 |
+
|
36 |
+
|
tools/conversation.py
CHANGED
@@ -16,12 +16,43 @@
|
|
16 |
from PIL import Image
|
17 |
import torch
|
18 |
from transformers import StoppingCriteria, StoppingCriteriaList
|
|
|
|
|
|
|
19 |
|
20 |
from enum import auto, Enum
|
21 |
import os
|
22 |
-
from dataset.processor import Processor
|
23 |
import re
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
IMAGE_TOKEN = "<image>"
|
27 |
VIDEO_TOKEN = "<video>"
|
@@ -31,24 +62,48 @@ class SeparatorStyle(Enum):
|
|
31 |
SINGLE = auto()
|
32 |
TWO = auto()
|
33 |
|
34 |
-
def
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
for i, (role, message) in enumerate(conv.messages):
|
39 |
if message:
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
else:
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
|
54 |
class StoppingCriteriaSub(StoppingCriteria):
|
@@ -64,53 +119,36 @@ class StoppingCriteriaSub(StoppingCriteria):
|
|
64 |
|
65 |
|
66 |
class Chat:
|
67 |
-
def __init__(self, model, processor:
|
68 |
self.model = model
|
69 |
self.processor = processor
|
70 |
self.device = device
|
71 |
self.debug = debug
|
72 |
-
stop_words_ids = [torch.tensor([self.processor.tokenizer.eos_token_id]).to(device)]
|
73 |
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
74 |
|
75 |
def ask(self,text,conv):
|
76 |
-
conv.messages.append([conv.roles[0], text])
|
77 |
return conv
|
78 |
|
79 |
-
def prepare_model_inputs(self, conv,
|
80 |
-
conv.messages
|
81 |
-
|
82 |
-
conv.messages[0][1] = re.sub(f"({IMAGE_TOKEN}|{VIDEO_TOKEN})\n*", "", conv.messages[0][1])
|
83 |
-
|
84 |
-
if images is None or isinstance(images, list) and len(images) == 0:
|
85 |
-
if isinstance(visual_data_file, str) and os.path.exists(visual_data_file):
|
86 |
-
images = self.processor.load_images(visual_data_file, n_frames)
|
87 |
-
elif isinstance(visual_data_file, Image.Image):
|
88 |
-
images = [visual_data_file]
|
89 |
-
elif visual_data_file is None or visual_data_file == "":
|
90 |
-
images = None
|
91 |
-
else:
|
92 |
-
raise NotImplementedError
|
93 |
-
|
94 |
-
# os.system("rm tmp_images/*")
|
95 |
-
# for i, img in enumerate(images):
|
96 |
-
# img.save(f"tmp_images/{i+1}.jpg")
|
97 |
-
|
98 |
-
if isinstance(images, list) and len(images) > 0:
|
99 |
-
conv.messages[0][1] = IMAGE_TOKEN*len(images) + '\n' + conv.messages[0][1]
|
100 |
-
|
101 |
-
prompt = get_prompt(conv)
|
102 |
if self.debug:
|
103 |
-
print(f"visual_data_file: {visual_data_file}")
|
104 |
-
print(f"Prompt
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
repetition_penalty=1.0, length_penalty=1, temperature=0):
|
113 |
-
inputs, conv
|
114 |
if self.model is not None:
|
115 |
outputs = self.model.generate(
|
116 |
**inputs,
|
@@ -124,11 +162,13 @@ class Chat:
|
|
124 |
length_penalty=length_penalty,
|
125 |
temperature=temperature,
|
126 |
)
|
127 |
-
output_text = self.processor.tokenizer.decode(outputs[0][inputs['input_ids'][0].shape[0]:], skip_special_tokens=True)
|
128 |
else:
|
129 |
output_text = "Fake respone as launched in debug mode!"
|
130 |
-
conv.messages
|
131 |
-
|
|
|
|
|
132 |
|
133 |
class EasyDict(dict):
|
134 |
"""
|
@@ -204,19 +244,13 @@ conv_tarsier_yi = EasyDict({
|
|
204 |
}
|
205 |
)
|
206 |
|
207 |
-
|
208 |
"system": "",
|
209 |
-
"roles": ("
|
210 |
"messages": [],
|
211 |
-
"sep1": " ",
|
212 |
-
"sep2": "<|endoftext|>",
|
213 |
}
|
214 |
)
|
215 |
|
216 |
conv_templates = {
|
217 |
-
"
|
218 |
-
"tarsier-13b": conv_tarsier,
|
219 |
-
"tarsier-34b": conv_tarsier_yi,
|
220 |
-
"tarsier2-7b": conv_tarsier_qwen2
|
221 |
}
|
222 |
-
|
|
|
16 |
from PIL import Image
|
17 |
import torch
|
18 |
from transformers import StoppingCriteria, StoppingCriteriaList
|
19 |
+
from dataset.custom_data_parsers.utils import put_pred_to_data_dict, get_prompt_from_data_dict
|
20 |
+
from dataset.tarsier_datamodule import TarsierDataProcessor
|
21 |
+
from dataset.utils import *
|
22 |
|
23 |
from enum import auto, Enum
|
24 |
import os
|
|
|
25 |
import re
|
26 |
|
27 |
+
data_dict_tmp = {
|
28 |
+
"messages": [
|
29 |
+
{
|
30 |
+
"role": "user",
|
31 |
+
"content": [
|
32 |
+
{
|
33 |
+
"type": "video",
|
34 |
+
"video": {
|
35 |
+
"video_file": "/mnt/hdfs/vlm/videos/movies_aligned_0523/tt8266310/tt8266310_1.50.24-1.50.29.mp4"}
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"type": "text",
|
39 |
+
"text": "Describe the video in detail."
|
40 |
+
}
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"role": "assistant",
|
45 |
+
"content": [
|
46 |
+
{
|
47 |
+
"type": "text",
|
48 |
+
"text": "A man in the driver's seat, wearing a black jacket with a maroon shirt, fastens his seatbelt while smiling at the man in the passenger seat, who is adjusting his position. The passenger, also wearing a black jacket with a maroon shirt, turns to look forward and smiles. The driver then leans forward to start the car and leans back in his seat. In the background, a beige car is visible through the window."
|
49 |
+
}]}
|
50 |
+
],
|
51 |
+
"dataset": "video_caption",
|
52 |
+
"task": "video/caption",
|
53 |
+
"idx": 0,
|
54 |
+
}
|
55 |
+
|
56 |
|
57 |
IMAGE_TOKEN = "<image>"
|
58 |
VIDEO_TOKEN = "<video>"
|
|
|
62 |
SINGLE = auto()
|
63 |
TWO = auto()
|
64 |
|
65 |
+
def get_data_dict(conv, max_n_frames=None):
|
66 |
+
data_dict = {
|
67 |
+
"messages": []
|
68 |
+
}
|
69 |
for i, (role, message) in enumerate(conv.messages):
|
70 |
if message:
|
71 |
+
text = message["text"]
|
72 |
+
content_type = message["type"]
|
73 |
+
content = {}
|
74 |
+
if content_type == "text":
|
75 |
+
content['type'] = 'text'
|
76 |
+
content['text'] = text
|
77 |
+
task = "text-only"
|
78 |
+
elif content_type == "video":
|
79 |
+
content['type'] = 'video'
|
80 |
+
content['video'] = {
|
81 |
+
"video_file": text
|
82 |
+
}
|
83 |
+
if max_n_frames is not None:
|
84 |
+
content['video']['n_frames'] = max_n_frames
|
85 |
+
task = "video/QA"
|
86 |
+
elif content_type == "image":
|
87 |
+
content['type'] = 'image'
|
88 |
+
content['image'] = {
|
89 |
+
"image_file": text
|
90 |
+
}
|
91 |
+
task = "image/QA"
|
92 |
else:
|
93 |
+
content['type'] = 'text'
|
94 |
+
content['text'] = text
|
95 |
+
task = "text-only"
|
96 |
+
if data_dict['messages'] and data_dict['messages'][-1]['role'] == role:
|
97 |
+
data_dict['messages'][-1]['content'].append(content)
|
98 |
+
else:
|
99 |
+
data_dict['messages'].append({
|
100 |
+
"role": role,
|
101 |
+
"content": [content]
|
102 |
+
})
|
103 |
+
data_dict['dataset'] = task
|
104 |
+
data_dict['task'] = task
|
105 |
+
check_data_format(data_dict)
|
106 |
+
return data_dict
|
107 |
|
108 |
|
109 |
class StoppingCriteriaSub(StoppingCriteria):
|
|
|
119 |
|
120 |
|
121 |
class Chat:
|
122 |
+
def __init__(self, model, processor: TarsierDataProcessor, device='cuda', debug=False):
|
123 |
self.model = model
|
124 |
self.processor = processor
|
125 |
self.device = device
|
126 |
self.debug = debug
|
127 |
+
stop_words_ids = [torch.tensor([self.processor.processor.tokenizer.eos_token_id]).to(device)]
|
128 |
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
129 |
|
130 |
def ask(self,text,conv):
|
131 |
+
conv.messages.append([conv.roles[0], {"text": text, "type": "text"}])
|
132 |
return conv
|
133 |
|
134 |
+
def prepare_model_inputs(self, conv, n_frames=None):
|
135 |
+
# print(conv.messages)
|
136 |
+
data_dict = get_data_dict(conv, n_frames)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
if self.debug:
|
138 |
+
# print(f"visual_data_file: {visual_data_file}", flush=True)
|
139 |
+
print(f"###Prompt:\n{get_prompt_from_data_dict(data_dict)}")
|
140 |
+
|
141 |
+
batch_data = self.processor(data_dict)
|
142 |
+
model_inputs = {}
|
143 |
+
for k, v in batch_data.items():
|
144 |
+
if not isinstance(v, torch.Tensor):
|
145 |
+
continue
|
146 |
+
model_inputs[k] = v.to(self.device)
|
147 |
+
return model_inputs, conv
|
148 |
+
|
149 |
+
def answer(self, conv, n_frames=None, max_new_tokens=256, num_beams=1, min_length=1, top_p=1.0,
|
150 |
repetition_penalty=1.0, length_penalty=1, temperature=0):
|
151 |
+
inputs, conv = self.prepare_model_inputs(conv, n_frames)
|
152 |
if self.model is not None:
|
153 |
outputs = self.model.generate(
|
154 |
**inputs,
|
|
|
162 |
length_penalty=length_penalty,
|
163 |
temperature=temperature,
|
164 |
)
|
165 |
+
output_text = self.processor.processor.tokenizer.decode(outputs[0][inputs['input_ids'][0].shape[0]:], skip_special_tokens=True)
|
166 |
else:
|
167 |
output_text = "Fake respone as launched in debug mode!"
|
168 |
+
conv.messages.append(
|
169 |
+
[conv.roles[1], {"text": output_text, "type": "text"}]
|
170 |
+
)
|
171 |
+
return output_text, conv
|
172 |
|
173 |
class EasyDict(dict):
|
174 |
"""
|
|
|
244 |
}
|
245 |
)
|
246 |
|
247 |
+
conv_tarsier_qwen2_vl = EasyDict({
|
248 |
"system": "",
|
249 |
+
"roles": ("user", "assistant"),
|
250 |
"messages": [],
|
|
|
|
|
251 |
}
|
252 |
)
|
253 |
|
254 |
conv_templates = {
|
255 |
+
"tarsier2-7b": conv_tarsier_qwen2_vl
|
|
|
|
|
|
|
256 |
}
|
|
tools/rw_utils.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (2024) Bytedance Ltd. and/or its affiliates
|
2 |
+
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import json
|
15 |
+
from json import JSONEncoder
|
16 |
+
import numpy
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
class NumpyArrayEncoder(JSONEncoder):
|
20 |
+
def default(self, obj):
|
21 |
+
if isinstance(obj, numpy.ndarray):
|
22 |
+
return obj.tolist()
|
23 |
+
return JSONEncoder.default(self, obj)
|
24 |
+
|
25 |
+
def write_txt(data, path):
|
26 |
+
with open(path, 'w', encoding='utf-8')as f:
|
27 |
+
for d in data:
|
28 |
+
f.write(f'{d}\n')
|
29 |
+
|
30 |
+
def read_txt(path):
|
31 |
+
with open(path, 'r', encoding='utf-8', errors='ignore') as f:
|
32 |
+
lines = [l.strip('\n') for l in f.readlines()]
|
33 |
+
return lines
|
34 |
+
|
35 |
+
def read_jsonlines(path):
|
36 |
+
objs = []
|
37 |
+
with open(path) as f:
|
38 |
+
for line in f:
|
39 |
+
line = json.loads(line)
|
40 |
+
objs.append(line)
|
41 |
+
return objs
|
42 |
+
|
43 |
+
def write_jsonlines(data, path, cls=None, ensure_ascii=False):
|
44 |
+
with open(path, 'w') as f:
|
45 |
+
for d in data:
|
46 |
+
d = json.dumps(d, ensure_ascii=ensure_ascii, cls=cls)
|
47 |
+
f.write(d)
|
48 |
+
f.write('\n')
|
49 |
+
|
50 |
+
def read_parquet(path):
|
51 |
+
data = pd.read_parquet(path)
|
52 |
+
return data.to_dict('records')
|
53 |
+
|
54 |
+
def write_parquet(data, path):
|
55 |
+
data = pd.DataFrame(data)
|
56 |
+
data.to_parquet(path)
|
57 |
+
|
58 |
+
def read_csv(path):
|
59 |
+
data = pd.read_csv(path)
|
60 |
+
return data.to_dict(orient='records')
|
61 |
+
|
62 |
+
def write_csv(data, path):
|
63 |
+
data = pd.DataFrame(data)
|
64 |
+
data.to_csv(path, index=False, sep='\t')
|
tools/utils.py
CHANGED
@@ -12,46 +12,21 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
from models.modeling_tarsier import TarsierForConditionalGeneration, LlavaConfig
|
15 |
-
from dataset.processor import Processor
|
|
|
16 |
import torch
|
17 |
import base64
|
|
|
|
|
18 |
import os
|
19 |
|
20 |
HF_TOKEN = os.environ.get('HF_TOKEN', '')
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
@staticmethod
|
29 |
-
def green(x):
|
30 |
-
return '\33[32m' +x + '\033[0m'
|
31 |
-
|
32 |
-
@staticmethod
|
33 |
-
def yellow(x):
|
34 |
-
return '\33[33m' +x + '\033[0m'
|
35 |
-
|
36 |
-
@staticmethod
|
37 |
-
def blue(x):
|
38 |
-
return '\33[34m' +x + '\033[0m'
|
39 |
-
|
40 |
-
@staticmethod
|
41 |
-
def violet(x):
|
42 |
-
return '\33[35m' +x + '\033[0m'
|
43 |
-
|
44 |
-
def file_to_base64(img_path):
|
45 |
-
with open(img_path, 'rb') as video_file:
|
46 |
-
video_b64_str = base64.b64encode(video_file.read()).decode()
|
47 |
-
return video_b64_str
|
48 |
-
|
49 |
-
def load_model_and_processor(model_name_or_path, max_n_frames=8):
|
50 |
-
print(Color.red(f"Load model and processor from: {model_name_or_path}; with max_n_frames={max_n_frames}"), flush=True)
|
51 |
-
processor = Processor(
|
52 |
-
model_name_or_path,
|
53 |
-
max_n_frames=max_n_frames,
|
54 |
-
)
|
55 |
model_config = LlavaConfig.from_pretrained(
|
56 |
model_name_or_path,
|
57 |
trust_remote_code=True,
|
@@ -68,3 +43,8 @@ def load_model_and_processor(model_name_or_path, max_n_frames=8):
|
|
68 |
model.eval()
|
69 |
return model, processor
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
from models.modeling_tarsier import TarsierForConditionalGeneration, LlavaConfig
|
15 |
+
# from dataset.processor import Processor
|
16 |
+
from dataset.tarsier_datamodule import init_processor
|
17 |
import torch
|
18 |
import base64
|
19 |
+
from tools.color import Color
|
20 |
+
import yaml
|
21 |
import os
|
22 |
|
23 |
HF_TOKEN = os.environ.get('HF_TOKEN', '')
|
24 |
|
25 |
+
def load_model_and_processor(model_name_or_path, data_config):
|
26 |
+
print(Color.red(f"Load model and processor from: {model_name_or_path}"), flush=True)
|
27 |
+
if isinstance(data_config, str):
|
28 |
+
data_config = yaml.safe_load(open(data_config, 'r'))
|
29 |
+
processor = init_processor(model_name_or_path, data_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
model_config = LlavaConfig.from_pretrained(
|
31 |
model_name_or_path,
|
32 |
trust_remote_code=True,
|
|
|
43 |
model.eval()
|
44 |
return model, processor
|
45 |
|
46 |
+
def file_to_base64(img_path):
|
47 |
+
with open(img_path, 'rb') as video_file:
|
48 |
+
video_b64_str = base64.b64encode(video_file.read()).decode()
|
49 |
+
return video_b64_str
|
50 |
+
|