omerXfaruq commited on
Commit
50cd9e5
·
1 Parent(s): 01fa2e1
Files changed (1) hide show
  1. app.py +27 -10
app.py CHANGED
@@ -11,7 +11,9 @@ model = AutoModel.from_pretrained(model_ckpt)
11
  hidden_dim = model.config.hidden_size
12
  dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset")
13
 
14
- MAX_K = 50
 
 
15
 
16
  with gr.Blocks() as demo:
17
  gr.Markdown(
@@ -36,8 +38,8 @@ with gr.Blocks() as demo:
36
  inputs = extractor(images=image, return_tensors="pt")
37
  outputs = model(**inputs)
38
  embed = outputs.last_hidden_state[0][0]
39
- result = await index.query(vector=embed.tolist(), top_k=4)
40
- return [dataset["train"][int(vector.id)]["image"] for vector in result]
41
 
42
  gr.Examples(
43
  examples=[
@@ -55,31 +57,46 @@ with gr.Blocks() as demo:
55
  with gr.Row():
56
  with gr.Column(scale=1):
57
  adv_input_image = gr.Image(type="pil")
58
- adv_image_count = gr.Slider(1, MAX_K, 10, label="Image Count")
59
  adv_button = gr.Button("Submit")
60
 
61
  with gr.Column(scale=2):
62
- adv_output_image = gr.Gallery()
63
 
64
  async def find_similar_faces(image, count):
 
 
65
  inputs = extractor(images=image, return_tensors="pt")
66
  outputs = model(**inputs)
67
  embed = outputs.last_hidden_state[0][0]
68
  result = await index.query(
69
- vector=embed.tolist(), top_k=max(1, min(MAX_K, int(count)))
70
  )
71
- return [dataset["train"][int(vector.id)]["image"] for vector in result]
72
 
73
  adv_button.click(
74
  fn=find_similar_faces,
75
  inputs=[adv_input_image, adv_image_count],
76
- outputs=[adv_output_image],
77
  )
78
- adv_input_image.upload(
79
  fn=find_similar_faces,
80
  inputs=[adv_input_image, adv_image_count],
81
- outputs=[adv_output_image],
82
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
  if __name__ == "__main__":
85
  demo.queue(default_concurrency_limit=40)
 
11
  hidden_dim = model.config.hidden_size
12
  dataset = load_dataset("BounharAbdelaziz/Face-Aging-Dataset")
13
 
14
+ TOP_K = 1000
15
+ BASE_COUNT=4
16
+ MAX_COUNT = 30
17
 
18
  with gr.Blocks() as demo:
19
  gr.Markdown(
 
38
  inputs = extractor(images=image, return_tensors="pt")
39
  outputs = model(**inputs)
40
  embed = outputs.last_hidden_state[0][0]
41
+ result = await index.query(vector=embed.tolist(), top_k=TOP_K)
42
+ return [dataset["train"][int(vector.id)]["image"] for vector in result[:BASE_COUNT]]
43
 
44
  gr.Examples(
45
  examples=[
 
57
  with gr.Row():
58
  with gr.Column(scale=1):
59
  adv_input_image = gr.Image(type="pil")
60
+ adv_image_count = gr.Slider(1, MAX_COUNT, 10, label="Image Count")
61
  adv_button = gr.Button("Submit")
62
 
63
  with gr.Column(scale=2):
64
+ adv_output_images = gr.Gallery()
65
 
66
  async def find_similar_faces(image, count):
67
+ if image is None:
68
+ return None
69
  inputs = extractor(images=image, return_tensors="pt")
70
  outputs = model(**inputs)
71
  embed = outputs.last_hidden_state[0][0]
72
  result = await index.query(
73
+ vector=embed.tolist(), top_k=TOP_K
74
  )
75
+ return [dataset["train"][int(vector.id)]["image"] for vector in result[:int(count)]]
76
 
77
  adv_button.click(
78
  fn=find_similar_faces,
79
  inputs=[adv_input_image, adv_image_count],
80
+ outputs=[adv_output_images],
81
  )
82
+ adv_input_image.change(
83
  fn=find_similar_faces,
84
  inputs=[adv_input_image, adv_image_count],
85
+ outputs=[adv_output_images],
86
  )
87
+ gr.Examples(
88
+ examples=[
89
+ [dataset["train"][6]["image"], MAX_COUNT],
90
+ [dataset["train"][7]["image"], MAX_COUNT],
91
+ [dataset["train"][8]["image"], MAX_COUNT],
92
+ ],
93
+ inputs=[adv_input_image, adv_image_count],
94
+ outputs=adv_output_images,
95
+ fn=find_similar_faces,
96
+ cache_examples=False,
97
+ )
98
+
99
+
100
 
101
  if __name__ == "__main__":
102
  demo.queue(default_concurrency_limit=40)