Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from text_generation import Client, InferenceAPIClient | |
def get_client(model: str): | |
if model == "Rallio67/joi2_20B_instruct_alpha": | |
return Client(os.getenv("JOI_API_URL")) | |
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B": | |
return Client(os.getenv("OPENCHAT_API_URL")) | |
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None)) | |
def get_usernames(model: str): | |
if model == "Rallio67/joi2_20B_instruct_alpha": | |
return "User: ", "Joi: " | |
if model == "togethercomputer/GPT-NeoXT-Chat-Base-20B": | |
return "<human>: ", "<bot>: " | |
return "User: ", "Assistant: " | |
def predict( | |
model: str, | |
inputs: str, | |
top_p: float, | |
temperature: float, | |
top_k: int, | |
repetition_penalty: float, | |
watermark: bool, | |
chatbot, | |
history, | |
): | |
client = get_client(model) | |
user_name, assistant_name = get_usernames(model) | |
history.append(inputs) | |
past = [] | |
for data in chatbot: | |
user_data, model_data = data | |
if not user_data.startswith(user_name): | |
user_data = user_name + user_data | |
if not model_data.startswith("\n\n" + assistant_name): | |
model_data = "\n\n" + assistant_name + model_data | |
past.append(user_data + model_data + "\n\n") | |
if not inputs.startswith(user_name): | |
inputs = user_name + inputs | |
total_inputs = "".join(past) + inputs + "\n\n" + assistant_name | |
partial_words = "" | |
for i, response in enumerate(client.generate_stream( | |
total_inputs, | |
top_p=top_p if top_p < 1.0 else None, | |
top_k=top_k, | |
truncate=1000, | |
repetition_penalty=repetition_penalty, | |
watermark=watermark, | |
temperature=temperature, | |
max_new_tokens=500, | |
stop_sequences=[user_name.rstrip(), assistant_name.rstrip()], | |
)): | |
if response.token.special: | |
continue | |
partial_words = partial_words + response.token.text | |
if partial_words.endswith(user_name.rstrip()): | |
partial_words = partial_words.rstrip(user_name.rstrip()) | |
if partial_words.endswith(assistant_name.rstrip()): | |
partial_words = partial_words.rstrip(assistant_name.rstrip()) | |
if i == 0: | |
history.append(" " + partial_words) | |
else: | |
history[-1] = partial_words | |
chat = [ | |
(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2) | |
] | |
yield chat, history | |
def reset_textbox(): | |
return gr.update(value="") | |
title = """<h1 align="center">🔥Large Language Model API 🚀Streaming🚀</h1>""" | |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
User: <utterance> | |
Assistant: <utterance> | |
User: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of multiple LLMs when prompted in this way. | |
""" | |
with gr.Blocks( | |
css="""#col_container {margin-left: auto; margin-right: auto;} | |
#chatbot {height: 520px; overflow: auto;}""" | |
) as demo: | |
gr.HTML(title) | |
with gr.Column(elem_id="col_container"): | |
model = gr.Radio( | |
value="Rallio67/joi2_20B_instruct_alpha", | |
choices=[ | |
"Rallio67/joi2_20B_instruct_alpha", | |
# "togethercomputer/GPT-NeoXT-Chat-Base-20B", | |
"google/flan-t5-xxl", | |
"google/flan-ul2", | |
"bigscience/bloom", | |
"bigscience/bloomz", | |
"EleutherAI/gpt-neox-20b", | |
], | |
label="Model", | |
interactive=True, | |
) | |
chatbot = gr.Chatbot(elem_id="chatbot") | |
inputs = gr.Textbox( | |
placeholder="Hi there!", label="Type an input and press Enter" | |
) | |
state = gr.State([]) | |
b1 = gr.Button() | |
with gr.Accordion("Parameters", open=False): | |
top_p = gr.Slider( | |
minimum=-0, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
interactive=True, | |
label="Top-p (nucleus sampling)", | |
) | |
temperature = gr.Slider( | |
minimum=-0, | |
maximum=5.0, | |
value=0.5, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_k = gr.Slider( | |
minimum=1, | |
maximum=50, | |
value=4, | |
step=1, | |
interactive=True, | |
label="Top-k", | |
) | |
repetition_penalty = gr.Slider( | |
minimum=0.1, | |
maximum=3.0, | |
value=1.03, | |
step=0.01, | |
interactive=True, | |
label="Repetition Penalty", | |
) | |
watermark = gr.Checkbox(value=True, label="Text watermarking") | |
inputs.submit( | |
predict, | |
[ | |
model, | |
inputs, | |
top_p, | |
temperature, | |
top_k, | |
repetition_penalty, | |
watermark, | |
chatbot, | |
state, | |
], | |
[chatbot, state], | |
) | |
b1.click( | |
predict, | |
[ | |
model, | |
inputs, | |
top_p, | |
temperature, | |
top_k, | |
repetition_penalty, | |
watermark, | |
chatbot, | |
state, | |
], | |
[chatbot, state], | |
) | |
b1.click(reset_textbox, [], [inputs]) | |
inputs.submit(reset_textbox, [], [inputs]) | |
gr.Markdown(description) | |
demo.queue(concurrency_count=16).launch(debug=True) | |