omni-zero / predict.py
Omer Karisman
updates
abe6901
# Prediction interface for Cog βš™οΈ
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
from typing import List
from omni_zero import OmniZeroSingle
from PIL import Image
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
# self.model = torch.load("./weights.pth")
self.omni_zero = OmniZeroSingle(
base_model="frankjoshua/albedobaseXL_v13",
)
def predict(
self,
seed: int = Input(description="Random seed for the model", default=42),
prompt: str = Input(description="Prompt for the model", default="A person"),
negative_prompt: str = Input(description="Negative prompt for the model", default="blurry, out of focus"),
guidance_scale: float = Input(description="Guidance scale for the model", default=3.0, ge=0.0, le=14.0),
number_of_images: int = Input(description="Number of images to generate", default=1, ge=1, le=4),
number_of_steps: int = Input(description="Number of steps for the model", default=10, ge=1, le=50),
image_url: Path = Input(description="Base image for the model"),
image_strength: float = Input(description="Base image strength for the model", default=0.15, ge=0.0, le=1.0),
composition_image_url: Path = Input(description="Composition image for the model"),
composition_strength: float = Input(description="Composition image strength for the model", default=1.0, ge=0.0, le=1.0),
style_image_url: Path = Input(description="Style image for the model"),
style_strength: float = Input(description="Style image strength for the model", default=1.0, ge=0.0, le=1.0),
identity_image_url: Path = Input(description="Identity image for the model"),
identity_strength: float = Input(description="Identity image strength for the model", default=1.0, ge=0.0, le=1.0),
depth_image_url: Path = Input(description="Depth image for the model", default=None),
depth_image_strength: float = Input(description="Depth image strength for the model, if not supplied the composition image will be used for depth", default=0.5, ge=0.0, le=1.0),
) -> List[Path]:
"""Run a single prediction on the model"""
base_image = Image.open(image_url)
composition_image = Image.open(composition_image_url)
style_image = Image.open(style_image_url)
identity_image = Image.open(identity_image_url)
if depth_image_url is not None:
depth_image = Image.open(depth_image_url)
else:
depth_image = None
images = self.omni_zero.generate(
seed=seed,
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
number_of_images=number_of_images,
number_of_steps=number_of_steps,
base_image=base_image,
base_image_strength=image_strength,
composition_image=composition_image,
composition_image_strength=composition_strength,
style_image=style_image,
style_image_strength=style_strength,
identity_image=identity_image,
identity_image_strength=identity_strength,
depth_image=depth_image,
depth_image_strength=depth_image_strength,
)
outputs = []
for i, image in enumerate(images):
output_path = f"oz_output_{i}.jpg"
image.save(output_path)
outputs.append(Path(output_path))
return outputs