import streamlit as st import requests import os import json import pandas as pd # Function to call the Together AI model for the initial analysis def call_ai_model_initial(all_message): url = "https://api.together.xyz/v1/chat/completions" payload = { "model": "NousResearch/Nous-Hermes-2-Yi-34B", "temperature": 1.05, "top_p": 0.9, "top_k": 50, "repetition_penalty": 1, "n": 1, "messages": [{"role": "user", "content": all_message}], "stream_tokens": True, } TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') if TOGETHER_API_KEY is None: raise ValueError("TOGETHER_API_KEY environment variable not set.") headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {TOGETHER_API_KEY}", } response = requests.post(url, json=payload, headers=headers, stream=True) response.raise_for_status() # Ensure HTTP request was successful return response # Function to call the Together AI model for analyzing the text and computing performance score def call_ai_model_analysis(analysis_text): url = "https://api.together.xyz/v1/chat/completions" payload = { "model": "NousResearch/Nous-Hermes-2-Yi-34B", "temperature": 1.05, "top_p": 0.9, "top_k": 50, "repetition_penalty": 1, "n": 1, "messages": [{"role": "user", "content": analysis_text}], "stream_tokens": True, } TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') if TOGETHER_API_KEY is None: raise ValueError("TOGETHER_API_KEY environment variable not set.") headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {TOGETHER_API_KEY}", } response = requests.post(url, json=payload, headers=headers, stream=True) response.raise_for_status() # Ensure HTTP request was successful return response # Streamlit app layout st.title("Climate Impact on Sports Performance and Infrastructure") st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.") # Inputs for climate conditions temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25) humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50) wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0) uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5) air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100) precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0) atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013) # Geographic location input latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0) longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0) if st.button("Generate Prediction"): all_message = ( f"Assess the impact on sports performance and infrastructure based on climate conditions: " f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, " f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. " f"Location: Latitude {latitude}, Longitude {longitude}." f"After analyzing that, I want you to visualize the data in the best way possible, might be in a table, using a chart or any other way so that it could be easy to understand." ) try: with st.spinner("Analyzing climate conditions..."): initial_response = call_ai_model_initial(all_message) initial_text = "" for line in initial_response.iter_lines(): if line: line_content = line.decode('utf-8') if line_content.startswith("data: "): line_content = line_content[6:] # Strip "data: " prefix try: json_data = json.loads(line_content) if "choices" in json_data: delta = json_data["choices"][0]["delta"] if "content" in delta: initial_text += delta["content"] except json.JSONDecodeError: continue st.success("Initial analysis completed!") with st.spinner("Generating predictions..."): analysis_text = ( f"Analyze the following text and extract a performance score based on the climate conditions and their impact: {initial_text}" ) analysis_response = call_ai_model_analysis(analysis_text) analysis_result = "" for line in analysis_response.iter_lines(): if line: line_content = line.decode('utf-8') if line_content.startswith("data: "): line_content = line_content[6:] # Strip "data: " prefix try: json_data = json.loads(line_content) if "choices" in json_data: delta = json_data["choices"][0]["delta"] if "content" in delta: analysis_result += delta["content"] except json.JSONDecodeError: continue st.success("Predictions generated!") # Extract performance score from the analysis result # Assuming the performance score is provided in the text as "Performance Score: XX%" performance_score = "N/A" for line in analysis_result.split('\n'): if "Performance Score:" in line: performance_score = line.split(":")[1].strip() # Prepare data for visualization results_data = { "Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"], "Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure] } results_df = pd.DataFrame(results_data) # Display results in a table st.subheader("Results Summary") st.table(results_df) # Display prediction st.markdown("**Predicted Impact on Performance and Infrastructure:**") st.markdown(initial_text.strip()) # Display performance score st.markdown(f"**Performance Score:** {performance_score}") except ValueError as ve: st.error(f"Configuration error: {ve}") except requests.exceptions.RequestException as re: st.error(f"Request error: {re}") except Exception as e: st.error(f"An unexpected error occurred: {e}")