import streamlit as st import requests import os import json import pandas as pd import folium # For map visualizations, though we'll generate a static map from streamlit_folium import folium_static # Function to call the Together AI model def call_ai_model(all_message): url = "https://api.together.xyz/v1/chat/completions" payload = { "model": "NousResearch/Nous-Hermes-2-Yi-34B", "temperature": 1.05, "top_p": 0.9, "top_k": 50, "repetition_penalty": 1, "n": 1, "messages": [{"role": "user", "content": all_message}], "stream_tokens": True, } TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') if TOGETHER_API_KEY is None: raise ValueError("TOGETHER_API_KEY environment variable not set.") headers = { "accept": "application/json", "content-type": "application/json", "Authorization": f"Bearer {TOGETHER_API_KEY}", } response = requests.post(url, json=payload, headers=headers, stream=True) response.raise_for_status() # Ensure HTTP request was successful return response # Streamlit app layout st.title("Climate Impact on Sports Performance and Infrastructure") st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.") # Inputs for climate conditions temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25) humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50) wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0) uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5) air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100) precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0) atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013) # Geographic location latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0) longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0) # Athlete-specific data age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25) sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"]) performance_history = st.text_area("Athlete Performance History:") # Infrastructure characteristics facility_type = st.selectbox("Facility Type:", ["Stadium", "Gymnasium", "Outdoor Field"]) facility_age = st.number_input("Facility Age (years):", min_value=0, max_value=100, value=10) materials_used = st.text_input("Materials Used in Construction:") if st.button("Generate Prediction"): all_message = ( f"Assess the impact on sports performance and infrastructure based on climate conditions: " f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, " f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. " f"Location: Latitude {latitude}, Longitude {longitude}. " f"Athlete (Age: {age}, Sport: {sport}), Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used})." ) try: with st.spinner("Generating response..."): response = call_ai_model(all_message) generated_text = "" for line in response.iter_lines(): if line: line_content = line.decode('utf-8') if line_content.startswith("data: "): line_content = line_content[6:] # Strip "data: " prefix try: json_data = json.loads(line_content) if "choices" in json_data: delta = json_data["choices"][0]["delta"] if "content" in delta: generated_text += delta["content"] except json.JSONDecodeError: continue st.success("Response generated!") # Prepare data for visualization results_data = { "Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"], "Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure] } results_df = pd.DataFrame(results_data) # Display results in a table st.subheader("Results Summary") st.table(results_df) # Display prediction st.markdown("**Predicted Impact on Performance and Infrastructure:**") st.markdown(generated_text.strip()) # Generate static map using Folium map_center = [latitude, longitude] sport_map = folium.Map(location=map_center, zoom_start=12) folium.Marker(location=map_center, popup="User Location").add_to(sport_map) st.subheader("Geographical Visualization") folium_static(sport_map) except ValueError as ve: st.error(f"Configuration error: {ve}") except requests.exceptions.RequestException as re: st.error(f"Request error: {re}") except Exception as e: st.error(f"An unexpected error occurred: {e}")