Spaces:
Runtime error
Runtime error
ogegadavis254
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ import requests
|
|
3 |
import os
|
4 |
import json
|
5 |
import pandas as pd
|
6 |
-
import
|
7 |
-
from
|
8 |
|
9 |
# Function to call the Together API with the provided model
|
10 |
def call_ai_model(all_message):
|
@@ -48,6 +48,10 @@ air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value
|
|
48 |
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
49 |
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
50 |
|
|
|
|
|
|
|
|
|
51 |
# Athlete-specific inputs
|
52 |
age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25)
|
53 |
sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"])
|
@@ -66,8 +70,8 @@ if st.button("Generate Prediction"):
|
|
66 |
all_message = (
|
67 |
f"Given the climate conditions: Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, "
|
68 |
f"UV Index {uv_index}, Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
|
69 |
-
f"Atmospheric Pressure {atmospheric_pressure} hPa.
|
70 |
-
f"Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used}). "
|
71 |
f"Assess the impact on sports performance, infrastructure, and socio-economic aspects."
|
72 |
)
|
73 |
|
@@ -98,17 +102,20 @@ if st.button("Generate Prediction"):
|
|
98 |
|
99 |
# Displaying a table of input data
|
100 |
data = {
|
101 |
-
'Condition': ['Temperature', 'Humidity', 'Wind Speed', 'UV Index', 'Air Quality Index', 'Precipitation', 'Atmospheric Pressure'],
|
102 |
-
'Value': [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure]
|
103 |
}
|
104 |
df = pd.DataFrame(data)
|
105 |
st.subheader("Input Data Overview")
|
106 |
st.table(df)
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
except ValueError as ve:
|
114 |
st.error(f"Configuration error: {ve}")
|
|
|
3 |
import os
|
4 |
import json
|
5 |
import pandas as pd
|
6 |
+
import folium # For creating the map visualizations
|
7 |
+
from folium.plugins import MarkerCluster
|
8 |
|
9 |
# Function to call the Together API with the provided model
|
10 |
def call_ai_model(all_message):
|
|
|
48 |
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0)
|
49 |
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013)
|
50 |
|
51 |
+
# Geographic location
|
52 |
+
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0)
|
53 |
+
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0)
|
54 |
+
|
55 |
# Athlete-specific inputs
|
56 |
age = st.number_input("Athlete Age:", min_value=0, max_value=100, value=25)
|
57 |
sport = st.selectbox("Select Sport:", ["Running", "Cycling", "Swimming", "Football", "Basketball"])
|
|
|
70 |
all_message = (
|
71 |
f"Given the climate conditions: Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, "
|
72 |
f"UV Index {uv_index}, Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, "
|
73 |
+
f"Atmospheric Pressure {atmospheric_pressure} hPa. Location: Latitude {latitude}, Longitude {longitude}. "
|
74 |
+
f"For athlete (Age: {age}, Sport: {sport}), Facility (Type: {facility_type}, Age: {facility_age}, Materials: {materials_used}). "
|
75 |
f"Assess the impact on sports performance, infrastructure, and socio-economic aspects."
|
76 |
)
|
77 |
|
|
|
102 |
|
103 |
# Displaying a table of input data
|
104 |
data = {
|
105 |
+
'Condition': ['Temperature', 'Humidity', 'Wind Speed', 'UV Index', 'Air Quality Index', 'Precipitation', 'Atmospheric Pressure', 'Latitude', 'Longitude'],
|
106 |
+
'Value': [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure, latitude, longitude]
|
107 |
}
|
108 |
df = pd.DataFrame(data)
|
109 |
st.subheader("Input Data Overview")
|
110 |
st.table(df)
|
111 |
|
112 |
+
# Creating a map with the provided location
|
113 |
+
map_center = [latitude, longitude]
|
114 |
+
sport_map = folium.Map(location=map_center, zoom_start=12)
|
115 |
+
marker_cluster = MarkerCluster().add_to(sport_map)
|
116 |
+
folium.Marker(location=map_center, popup="User Location").add_to(marker_cluster)
|
117 |
+
map_html = sport_map._repr_html_()
|
118 |
+
st.components.v1.html(map_html, height=600)
|
119 |
|
120 |
except ValueError as ve:
|
121 |
st.error(f"Configuration error: {ve}")
|