Spaces:
Runtime error
Runtime error
import streamlit as st | |
import requests | |
import os | |
import json | |
import pandas as pd | |
# Function to call the Together AI model for the initial analysis | |
def call_ai_model_initial(all_message): | |
url = "https://api.together.xyz/v1/chat/completions" | |
payload = { | |
"model": "NousResearch/Nous-Hermes-2-Yi-34B", | |
"temperature": 1.05, | |
"top_p": 0.9, | |
"top_k": 50, | |
"repetition_penalty": 1, | |
"n": 1, | |
"messages": [{"role": "user", "content": all_message}], | |
"stream_tokens": True, | |
} | |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') | |
if TOGETHER_API_KEY is None: | |
raise ValueError("TOGETHER_API_KEY environment variable not set.") | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"Authorization": f"Bearer {TOGETHER_API_KEY}", | |
} | |
response = requests.post(url, json=payload, headers=headers, stream=True) | |
response.raise_for_status() # Ensure HTTP request was successful | |
return response | |
# Function to call the Together AI model for analyzing the text and computing performance score | |
def call_ai_model_analysis(analysis_text): | |
url = "https://api.together.xyz/v1/chat/completions" | |
payload = { | |
"model": "NousResearch/Nous-Hermes-2-Yi-34B", | |
"temperature": 1.05, | |
"top_p": 0.9, | |
"top_k": 50, | |
"repetition_penalty": 1, | |
"n": 1, | |
"messages": [{"role": "user", "content": analysis_text}], | |
"stream_tokens": True, | |
} | |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') | |
if TOGETHER_API_KEY is None: | |
raise ValueError("TOGETHER_API_KEY environment variable not set.") | |
headers = { | |
"accept": "application/json", | |
"content-type": "application/json", | |
"Authorization": f"Bearer {TOGETHER_API_KEY}", | |
} | |
response = requests.post(url, json=payload, headers=headers, stream=True) | |
response.raise_for_status() # Ensure HTTP request was successful | |
return response | |
# Streamlit app layout | |
st.title("Climate Impact on Sports Performance and Infrastructure") | |
st.write("Analyze and visualize the impact of climate conditions on sports performance and infrastructure.") | |
# Inputs for climate conditions | |
temperature = st.number_input("Temperature (°C):", min_value=-50, max_value=50, value=25) | |
humidity = st.number_input("Humidity (%):", min_value=0, max_value=100, value=50) | |
wind_speed = st.number_input("Wind Speed (km/h):", min_value=0.0, max_value=200.0, value=15.0) | |
uv_index = st.number_input("UV Index:", min_value=0, max_value=11, value=5) | |
air_quality_index = st.number_input("Air Quality Index:", min_value=0, max_value=500, value=100) | |
precipitation = st.number_input("Precipitation (mm):", min_value=0.0, max_value=500.0, value=10.0) | |
atmospheric_pressure = st.number_input("Atmospheric Pressure (hPa):", min_value=900, max_value=1100, value=1013) | |
# Geographic location input | |
latitude = st.number_input("Latitude:", min_value=-90.0, max_value=90.0, value=0.0) | |
longitude = st.number_input("Longitude:", min_value=-180.0, max_value=180.0, value=0.0) | |
if st.button("Generate Prediction"): | |
all_message = ( | |
f"Assess the impact on sports performance and infrastructure based on climate conditions: " | |
f"Temperature {temperature}°C, Humidity {humidity}%, Wind Speed {wind_speed} km/h, UV Index {uv_index}, " | |
f"Air Quality Index {air_quality_index}, Precipitation {precipitation} mm, Atmospheric Pressure {atmospheric_pressure} hPa. " | |
f"Location: Latitude {latitude}, Longitude {longitude}." | |
f"After analyzing that, I want you to visualize the data in the best way possible, might be in a table, using a chart or any other way so that it could be easy to understand." | |
) | |
try: | |
with st.spinner("Analyzing climate conditions..."): | |
initial_response = call_ai_model_initial(all_message) | |
initial_text = "" | |
for line in initial_response.iter_lines(): | |
if line: | |
line_content = line.decode('utf-8') | |
if line_content.startswith("data: "): | |
line_content = line_content[6:] # Strip "data: " prefix | |
try: | |
json_data = json.loads(line_content) | |
if "choices" in json_data: | |
delta = json_data["choices"][0]["delta"] | |
if "content" in delta: | |
initial_text += delta["content"] | |
except json.JSONDecodeError: | |
continue | |
st.success("Initial analysis completed!") | |
with st.spinner("Generating predictions..."): | |
analysis_text = ( | |
f"Analyze the following text and extract a performance score based on the climate conditions and their impact: {initial_text}" | |
) | |
analysis_response = call_ai_model_analysis(analysis_text) | |
analysis_result = "" | |
for line in analysis_response.iter_lines(): | |
if line: | |
line_content = line.decode('utf-8') | |
if line_content.startswith("data: "): | |
line_content = line_content[6:] # Strip "data: " prefix | |
try: | |
json_data = json.loads(line_content) | |
if "choices" in json_data: | |
delta = json_data["choices"][0]["delta"] | |
if "content" in delta: | |
analysis_result += delta["content"] | |
except json.JSONDecodeError: | |
continue | |
st.success("Predictions generated!") | |
# Extract performance score from the analysis result | |
# Assuming the performance score is provided in the text as "Performance Score: XX%" | |
performance_score = "N/A" | |
for line in analysis_result.split('\n'): | |
if "Performance Score:" in line: | |
performance_score = line.split(":")[1].strip() | |
# Prepare data for visualization | |
results_data = { | |
"Condition": ["Temperature", "Humidity", "Wind Speed", "UV Index", "Air Quality Index", "Precipitation", "Atmospheric Pressure"], | |
"Value": [temperature, humidity, wind_speed, uv_index, air_quality_index, precipitation, atmospheric_pressure] | |
} | |
results_df = pd.DataFrame(results_data) | |
# Display results in a table | |
st.subheader("Results Summary") | |
st.table(results_df) | |
# Display prediction | |
st.markdown("**Predicted Impact on Performance and Infrastructure:**") | |
st.markdown(initial_text.strip()) | |
# Display performance score | |
st.markdown(f"**Performance Score:** {performance_score}") | |
except ValueError as ve: | |
st.error(f"Configuration error: {ve}") | |
except requests.exceptions.RequestException as re: | |
st.error(f"Request error: {re}") | |
except Exception as e: | |
st.error(f"An unexpected error occurred: {e}") | |