import os, sys os.system("pip install pyworld") # ==0.3.3 now_dir = os.getcwd() sys.path.append(now_dir) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ["OPENBLAS_NUM_THREADS"] = "1" os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1" # Download models shell_script = './tools/dlmodels.sh' os.system(f'chmod +x {shell_script}') os.system('apt install git-lfs') os.system('git lfs install') os.system('apt-get -y install aria2') os.system('aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d . -o hubert_base.pt') try: return_code = os.system(shell_script) if return_code == 0: print("Shell script executed successfully.") else: print(f"Shell script failed with return code {return_code}") except Exception as e: print(f"An error occurred: {e}") import logging import shutil import threading import lib.globals.globals as rvc_globals from LazyImport import lazyload math = lazyload('math') import traceback import warnings from random import shuffle from subprocess import Popen from time import sleep import json import pathlib import fairseq logging.getLogger("faiss").setLevel(logging.WARNING) import faiss gr = lazyload("gradio") np = lazyload("numpy") torch = lazyload('torch') re = lazyload('regex') SF = lazyload("soundfile") SFWrite = SF.write from dotenv import load_dotenv from sklearn.cluster import MiniBatchKMeans import datetime from glob import glob1 import signal from signal import SIGTERM import librosa from configs.config import Config from infer.modules.vc.modules import VC from infer.modules.vc.utils import * from infer.modules.vc.pipeline import Pipeline import lib.globals.globals as rvc_globals math = lazyload('math') ffmpeg = lazyload('ffmpeg') import nltk nltk.download('punkt', quiet=True) from nltk.tokenize import sent_tokenize import easy_infer from infer.lib.csvutil import CSVutil from lib.infer_pack.models import ( SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono, SynthesizerTrnMs768NSFsid, SynthesizerTrnMs768NSFsid_nono, ) from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM from infer.lib.audio import load_audio from sklearn.cluster import MiniBatchKMeans import time import csv from shlex import quote as SQuote RQuote = lambda val: SQuote(str(val)) tmp = os.path.join(now_dir, "TEMP") runtime_dir = os.path.join(now_dir, "runtime/Lib/site-packages") directories = ['logs', 'audios', 'datasets', 'weights', 'audio-others' , 'audio-outputs'] shutil.rmtree(tmp, ignore_errors=True) shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True) os.makedirs(tmp, exist_ok=True) for folder in directories: os.makedirs(os.path.join(now_dir, folder), exist_ok=True) os.makedirs(tmp, exist_ok=True) os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True) os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True) os.environ["TEMP"] = tmp warnings.filterwarnings("ignore") torch.manual_seed(114514) logging.getLogger("numba").setLevel(logging.WARNING) logger = logging.getLogger(__name__) if not os.path.isdir("csvdb/"): os.makedirs("csvdb") frmnt, stp = open("csvdb/formanting.csv", "w"), open("csvdb/stop.csv", "w") frmnt.close() stp.close() global DoFormant, Quefrency, Timbre try: DoFormant, Quefrency, Timbre = CSVutil("csvdb/formanting.csv", "r", "formanting") DoFormant = ( lambda DoFormant: True if DoFormant.lower() == "true" else (False if DoFormant.lower() == "false" else DoFormant) )(DoFormant) except (ValueError, TypeError, IndexError): DoFormant, Quefrency, Timbre = False, 1.0, 1.0 CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre) load_dotenv() config = Config() vc = VC(config) if config.dml == True: def forward_dml(ctx, x, scale): ctx.scale = scale res = x.clone().detach() return res fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml ngpu = torch.cuda.device_count() gpu_infos = [] mem = [] if_gpu_ok = False isinterrupted = 0 class ToolButton(gr.Button, gr.components.FormComponent): """Small button with single emoji as text, fits inside gradio forms""" def __init__(self, **kwargs): super().__init__(variant="tool", **kwargs) def get_block_name(self): return "button" hubert_model = None weight_root = os.getenv("weight_root") index_root = os.getenv("index_root") datasets_root = "datasets" fshift_root = "formantshiftcfg" audio_root = "audios" audio_others_root = "audio-others" sup_audioext = {'wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'mp4', 'aac', 'alac', 'wma', 'aiff', 'webm', 'ac3'} names = [os.path.join(root, file) for root, _, files in os.walk(weight_root) for file in files if file.endswith((".pth", ".onnx"))] indexes_list = [os.path.join(root, name) for root, _, files in os.walk(index_root, topdown=False) for name in files if name.endswith(".index") and "trained" not in name] audio_paths = [os.path.join(root, name) for root, _, files in os.walk(audio_root, topdown=False) for name in files if name.endswith(tuple(sup_audioext))] audio_others_paths = [os.path.join(root, name) for root, _, files in os.walk(audio_others_root, topdown=False) for name in files if name.endswith(tuple(sup_audioext))] check_for_name = lambda: sorted(names)[0] if names else '' set_edge_voice = easy_infer.get_edge_voice() def update_tts_methods_voice(select_value): if select_value == "Edge-tts": return {"choices": set_edge_voice, "value": "", "__type__": "update"} def update_dataset_list(name): # Don't Remove new_datasets = [] for foldername in os.listdir(os.path.join(now_dir, datasets_root)): if "." not in foldername: new_datasets.append(os.path.join(easy_infer.find_folder_parent(".","pretrained"),"datasets",foldername)) return gr.Dropdown.update(choices=new_datasets) def get_indexes(): indexes_list = [ os.path.join(dirpath, filename) for dirpath, _, filenames in os.walk(index_root) for filename in filenames if filename.endswith(".index") and "trained" not in filename ] return indexes_list if indexes_list else '' def get_fshift_presets(): fshift_presets_list = [ os.path.join(dirpath, filename) for dirpath, _, filenames in os.walk(fshift_root) for filename in filenames if filename.endswith(".txt") ] return fshift_presets_list if fshift_presets_list else '' import soundfile as sf def generate_output_path(output_folder, base_name, extension): index = 1 while True: output_path = os.path.join(output_folder, f"{base_name}_{index}.{extension}") if not os.path.exists(output_path): return output_path index += 1 def change_choices(): names = [os.path.join(root, file) for root, _, files in os.walk(weight_root) for file in files if file.endswith((".pth", ".onnx"))] indexes_list = [os.path.join(root, name) for root, _, files in os.walk(index_root, topdown=False) for name in files if name.endswith(".index") and "trained" not in name] audio_paths = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))] return ( {"choices": sorted(names), "__type__": "update"}, {"choices": sorted(indexes_list), "__type__": "update"}, {"choices": sorted(audio_paths), "__type__": "update"} ) def change_choices2(): names = [os.path.join(root, file) for root, _, files in os.walk(weight_root) for file in files if file.endswith((".pth", ".onnx"))] indexes_list = [os.path.join(root, name) for root, _, files in os.walk(index_root, topdown=False) for name in files if name.endswith(".index") and "trained" not in name] return ( {"choices": sorted(names), "__type__": "update"}, {"choices": sorted(indexes_list), "__type__": "update"}, ) def change_choices3(): audio_paths = [os.path.join(audio_root, file) for file in os.listdir(os.path.join(now_dir, "audios"))] audio_others_paths = [os.path.join(audio_others_root, file) for file in os.listdir(os.path.join(now_dir, "audio-others"))] return ( {"choices": sorted(audio_others_paths), "__type__": "update"}, {"choices": sorted(audio_paths), "__type__": "update"} ) def clean(): return {"value": "", "__type__": "update"} def if_done(done, p): while 1: if p.poll() is None: sleep(0.5) else: break done[0] = True def if_done_multi(done, ps): while 1: flag = 1 for p in ps: if p.poll() is None: flag = 0 sleep(0.5) break if flag == 1: break done[0] = True def formant_enabled( cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button ): if cbox: DoFormant = True CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre) return ( {"value": True, "__type__": "update"}, {"visible": True, "__type__": "update"}, {"visible": True, "__type__": "update"}, {"visible": True, "__type__": "update"}, {"visible": True, "__type__": "update"}, {"visible": True, "__type__": "update"}, ) else: DoFormant = False CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre) return ( {"value": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": False, "__type__": "update"}, ) def formant_apply(qfrency, tmbre): Quefrency = qfrency Timbre = tmbre DoFormant = True CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre) return ( {"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"}, ) def update_fshift_presets(preset, qfrency, tmbre): if preset: with open(preset, 'r') as p: content = p.readlines() qfrency, tmbre = content[0].strip(), content[1] formant_apply(qfrency, tmbre) else: qfrency, tmbre = preset_apply(preset, qfrency, tmbre) return ( {"choices": get_fshift_presets(), "__type__": "update"}, {"value": qfrency, "__type__": "update"}, {"value": tmbre, "__type__": "update"}, ) global log_interval def set_log_interval(exp_dir, batch_size12): log_interval = 1 folder_path = os.path.join(exp_dir, "1_16k_wavs") if os.path.isdir(folder_path): wav_files_num = len(glob1(folder_path,"*.wav")) if wav_files_num > 0: log_interval = math.ceil(wav_files_num / batch_size12) if log_interval > 1: log_interval += 1 return log_interval global PID, PROCESS import re as regex import scipy.io.wavfile as wavfile cli_current_page = "HOME" def cli_split_command(com): exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)' split_array = regex.findall(exp, com) split_array = [group[0] if group[0] else group[1] for group in split_array] return split_array def execute_generator_function(genObject): for _ in genObject: pass def preset_apply(preset, qfer, tmbr): if str(preset) != "": with open(str(preset), "r") as p: content = p.readlines() qfer, tmbr = content[0].split("\n")[0], content[1] formant_apply(qfer, tmbr) else: pass return ( {"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"}, ) def change_page(page): global cli_current_page cli_current_page = page return 0 def switch_pitch_controls(f0method0): is_visible = f0method0 != 'rmvpe' if rvc_globals.NotesOrHertz: return ( {"visible": False, "__type__": "update"}, {"visible": is_visible, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": is_visible, "__type__": "update"} ) else: return ( {"visible": is_visible, "__type__": "update"}, {"visible": False, "__type__": "update"}, {"visible": is_visible, "__type__": "update"}, {"visible": False, "__type__": "update"} ) def match_index(sid0): picked = False folder = sid0.split(".")[0].split("_")[0] parent_dir = "./logs/" + folder if os.path.exists(parent_dir): for filename in os.listdir(parent_dir.replace("\\", "/")): if filename.endswith(".index"): for i in range(len(indexes_list)): if indexes_list[i] == ( os.path.join(("./logs/" + folder), filename).replace("\\", "/") ): break else: if indexes_list[i] == ( os.path.join( ("./logs/" + folder.lower()), filename ).replace("\\", "/") ): parent_dir = "./logs/" + folder.lower() break index_path = os.path.join( parent_dir.replace("\\", "/"), filename.replace("\\", "/") ).replace("\\", "/") return (index_path, index_path) else: return ("", "") weights_dir = 'weights/' def note_to_hz(note_name): SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2} pitch_class, octave = note_name[:-1], int(note_name[-1]) semitone = SEMITONES[pitch_class] note_number = 12 * (octave - 4) + semitone frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number return frequency def save_to_wav(record_button): if record_button is None: pass else: path_to_file=record_button new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav' new_path='./audios/'+new_name shutil.move(path_to_file,new_path) return new_name def save_to_wav2_edited(dropbox): if dropbox is None: pass else: file_path = dropbox.name target_path = os.path.join('audios', os.path.basename(file_path)) if os.path.exists(target_path): os.remove(target_path) print('Replacing old dropdown file...') shutil.move(file_path, target_path) return def save_to_wav2(dropbox): file_path = dropbox.name target_path = os.path.join('audios', os.path.basename(file_path)) if os.path.exists(target_path): os.remove(target_path) print('Replacing old dropdown file...') shutil.move(file_path, target_path) return target_path from gtts import gTTS import edge_tts import asyncio def change_choices_fix(): audio_paths=[] for filename in os.listdir("./audios"): if filename.endswith(('wav', 'mp3', 'flac', 'ogg', 'opus', 'm4a', 'mp4', 'aac', 'alac', 'wma', 'aiff', 'webm', 'ac3')): audio_paths.append(os.path.join('./audios',filename).replace('\\', '/')) print(audio_paths) most_recent_audio = "" if audio_paths: most_recent_audio = max(audio_paths, key=os.path.getctime) return {"choices": sorted(audio_paths), "value": most_recent_audio, "__type__": "update"} def custom_voice( _values, # filter indices audio_files, # all audio files model_voice_path='', transpose=0, f0method='pm', index_rate_=float(0.66), crepe_hop_length_=float(64), f0_autotune=False, file_index='', file_index2='', ): vc.get_vc(model_voice_path) for _value_item in _values: filename = "audio2/"+audio_files[_value_item] if _value_item != "converted_tts" else audio_files[0] try: print(audio_files[_value_item], model_voice_path) except: pass info_, (sample_, audio_output_) = vc.vc_single_dont_save( sid=0, input_audio_path0=filename, #f"audio2/{filename}", input_audio_path1=filename, #f"audio2/{filename}", f0_up_key=transpose, # transpose for m to f and reverse 0 12 f0_file=None, f0_method= f0method, file_index= file_index, # dir pwd? file_index2= file_index2, # file_big_npy1, index_rate= index_rate_, filter_radius= int(3), resample_sr= int(0), rms_mix_rate= float(0.25), protect= float(0.33), crepe_hop_length= crepe_hop_length_, f0_autotune=f0_autotune, f0_min=50, note_min=50, f0_max=1100, note_max=1100 ) sf.write( file= filename, #f"audio2/{filename}", samplerate=sample_, data=audio_output_ ) def make_test( tts_text, tts_voice, model_path, index_path, transpose, f0_method, index_rate, crepe_hop_length, f0_autotune, tts_method ): if tts_voice == None: return filename = os.path.join(now_dir, "audio-outputs", "converted_tts.wav") if "SET_LIMIT" == os.getenv("DEMO"): if len(tts_text) > 60: tts_text = tts_text[:60] print("DEMO; limit to 60 characters") language = tts_voice[:2] if tts_method == "Edge-tts": try: asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(filename)) except: try: tts = gTTS(tts_text, lang=language) tts.save(filename) tts.save print(f'No audio was received. Please change the tts voice for {tts_voice}. USING gTTS.') except: tts = gTTS('a', lang=language) tts.save(filename) print('Error: Audio will be replaced.') os.system("cp audio-outputs/converted_tts.wav audio-outputs/real_tts.wav") custom_voice( ["converted_tts"], # filter indices ["audio-outputs/converted_tts.wav"], # all audio files model_voice_path=model_path, transpose=transpose, f0method=f0_method, index_rate_=index_rate, crepe_hop_length_=crepe_hop_length, f0_autotune=f0_autotune, file_index='', file_index2=index_path, ) return os.path.join(now_dir, "audio-outputs", "converted_tts.wav"), os.path.join(now_dir, "audio-outputs", "real_tts.wav") def_text = "อย่าลืมที่จะกดไลค์ และกดซับสะไค้ร์ช่องโออิสไมซี เพื่อไม่พลาดมีมใหม่ๆเวลาอัพโหลด" def_index = "logs/DaengGuitar/added_IVF473_Flat_nprobe_1_daengguitar_v2.index" def GradioSetup(UTheme=gr.themes.Soft()): default_weight = names[0] if names else '' with gr.Blocks(title="oItsMinez's RVC v2 WebUI", theme=gr.themes.Base(font=[gr.themes.GoogleFont("Noto Sans Thai"), "sans-serif"])) as app: gr.Label('oItsMineZ\'s RVC v2 WebUI', show_label=False) gr.Markdown( "
\n\n"+ "RVC v2 Model"+ "[![oItsMineZ's RVC Model](https://img.shields.io/badge/%F0%9F%A4%97_Hugging_Face-_oItsMineZ's%20RVC%20%20Model-yellow?style=for-the-badge&logoColor=yellow)](https://huggingface.co/oItsMineZ/oItsMineZ-RVC-Model)\n\n"+ "ติดตาม oItsMineZ"+ "[![oItsMineZ on YouTube](https://img.shields.io/badge/YouTube-FF0000?style=for-the-badge&logo=youtube&logoColor=white)](https://www.youtube.com/@oItsMineZ?sub_confirmation=1)"+ "
" ) with gr.Tabs(): with gr.TabItem("Info"): gr.Markdown("## 📌แนะนำให้โคลน Space นี้ไว้ในบัญชีของคุณ เพื่อการใช้งานที่ดียิ่งขึ้น (ต้องสมัครบัญชี Hugging Face ก่อน)") gr.Markdown("[![Duplicate this Space](https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-sm-dark.svg)](https://huggingface.co/spaces/oItsMineZ/RVC-v2-WebUI?duplicate=true)\n\n") gr.HTML("

📄ข้อควรรู้

") gr.Markdown("- RVC v2 (Retrieval Based Voice Conversion v2) เป็น AI Voice Model ที่ปรับปรุงมาจาก VITS ที่ทำให้เทรนโมเดลได้ง่ายขึ้น และคุณภาพของเสียงดีขึ้น") gr.Markdown("- WebUI นี้ใช้สำหรับเฉพาะ **เสียง Vocal หรือ TTS** เท่านั้น! ถ้าอยากใช้ AI Cover เฉพาให้ใช้ [**ตัวนี้แทน**](https://huggingface.co/spaces/oItsMineZ/RVC-v2-AI-Cover-WebUI)") gr.Markdown("- ถ้าอยากแยกเสียงร้องกับเสียงดนตรีออกจากเพลง [**(ให้แยกได้ที่นี่)**](https://huggingface.co/spaces/oItsMineZ/Ultimate-Vocal-Remover-WebUI) แล้วค่อยนำไฟล์ Vocal มาอัพโหลดในนี้") gr.HTML("

✨ฟีเจอร์

") gr.Markdown("- อัปโหลดไฟล์ Vocal หรือใช้ TTS (Text to Speech) แปลงข้อความเป็นเสียงได้เลย") gr.Markdown("- สามารถดาวน์โหลด Model อื่นๆ ได้ที่แท็บ Resources [**(เว็บสำหรับหา Model เพิ่มเติม)**](https://voice-models.com)") gr.Markdown("- ที่สำคัญ **อย่าลืม** *Refresh Model* ทุกครั้งเมื่อโหลด Model ใหม่เข้ามา") gr.HTML("

📋รายชื่อ Model

") gr.Markdown("- อาจารย์แดง (DaengGuitar) - 500 Epochs") gr.Markdown("- เต้ (TAEEXZENFIRE) - 500 Epochs") gr.Markdown("- ท่านศาสดา - 50 Epochs") gr.Markdown("- Model ใหม่เร็วๆ นี้ 🤫") gr.HTML("

🌐WebUI อื่นๆ

") gr.Markdown("- AI Cover (เพลงที่มีทำนอง)") gr.Markdown("[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%8E%A4%EF%B8%8F_Space-_RVC%20v2%20AI%20Cover%20WebUI-red?style=for-the-badge)](https://huggingface.co/spaces/oItsMineZ/RVC-v2-AI-Cover-WebUI)") gr.HTML("

❤️ขอขอบคุณ

") gr.Markdown("- [**@r3gm**](https://huggingface.co/r3gm) for [***Ultimate Vocal Remover WebUI***](https://huggingface.co/spaces/r3gm/Ultimate-Vocal-Remover-WebUI) and [***RVC Inference HF***](https://huggingface.co/spaces/r3gm/RVC_HFv2)") with gr.TabItem("RVC Conversion"): with gr.Row(): sid0 = gr.Dropdown(label="Inferencing voice:", choices=sorted(names), value=default_weight) refresh_button = gr.Button("Refresh", variant="primary") clean_button = gr.Button("Unload voice to save GPU memory", variant="primary") clean_button.click(fn=lambda: ({"value": "", "__type__": "update"}), inputs=[], outputs=[sid0]) with gr.TabItem("Main Options"): with gr.Row(): spk_item = gr.Slider( minimum=0, maximum=2333, step=1, label="Select Speaker/Singer ID:", value=0, visible=False, interactive=True, ) with gr.Group(): with gr.Row(): with gr.Column(): # First column for audio-related inputs dropbox = gr.File(label="Drag your audio here:") record_button=gr.Audio(source="microphone", label="Or record an audio:", type="filepath") input_audio0 = gr.Textbox( label="Manual path to the audio file to be processed", value=os.path.join(now_dir, "audios", "someguy.mp3"), visible=False ) input_audio1 = gr.Dropdown( label="Auto detect audio path and select from the dropdown:", choices=sorted(audio_paths), value='', interactive=True, ) input_audio1.select(fn=lambda:'',inputs=[],outputs=[input_audio0]) input_audio0.input(fn=lambda:'',inputs=[],outputs=[input_audio1]) dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0]).then(fn=change_choices_fix, inputs=[], outputs=[input_audio1]) record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0]).then(fn=change_choices_fix, inputs=[], outputs=[input_audio1]) best_match_index_path1 = match_index(sid0.value) # Get initial index from default sid0 (first voice model in list) with gr.Column(): # Second column for pitch shift and other options file_index2 = gr.Dropdown( label="Auto-detect index path and select from the dropdown (**เลือกให้ตรงกับ Model ที่เลือกไว้**):", choices=get_indexes(), value=def_index, interactive=True, allow_custom_value=True, ) index_rate1 = gr.Slider( minimum=0, maximum=1, label="Search feature ratio:", value=0.75, interactive=True, ) refresh_button.click( fn=change_choices, inputs=[], outputs=[sid0, file_index2, input_audio1] ) with gr.Column(): vc_transform0 = gr.Number( label="Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):", value=0 ) # Create a checkbox for advanced settings advanced_settings_checkbox = gr.Checkbox( value=False, label="Advanced Settings", interactive=True, ) # Advanced settings container with gr.Column(visible=False) as advanced_settings: # Initially hidden with gr.Row(label = "Advanced Settings", open = False): with gr.Column(): f0method0 = gr.Radio( label="Select the pitch extraction algorithm:", choices=["pm", "harvest", "dio", "crepe", "crepe-tiny", "mangio-crepe", "mangio-crepe-tiny", "rmvpe", "rmvpe+"], value="rmvpe+", interactive=True, ) f0_autotune = gr.Checkbox( label="Enable autotune", interactive=True ) crepe_hop_length = gr.Slider( minimum=1, maximum=512, step=1, label="Mangio-Crepe Hop Length (Only applies to mangio-crepe): Hop length refers to the time it takes for the speaker to jump to a dramatic pitch. Lower hop lengths take more time to infer but are more pitch accurate.", value=120, interactive=True, visible=False, ) filter_radius0 = gr.Slider( minimum=0, maximum=7, label="If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness.", value=3, step=1, interactive=True, ) minpitch_slider = gr.Slider( label = "Min pitch:", info = "Specify minimal pitch for inference [HZ]", step = 0.1, minimum = 1, scale = 0, value = 50, maximum = 16000, interactive = True, visible = (not rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'), ) minpitch_txtbox = gr.Textbox( label = "Min pitch:", info = "Specify minimal pitch for inference [NOTE][OCTAVE]", placeholder = "C5", visible = (rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'), interactive = True, ) maxpitch_slider = gr.Slider( label = "Max pitch:", info = "Specify max pitch for inference [HZ]", step = 0.1, minimum = 1, scale = 0, value = 1100, maximum = 16000, interactive = True, visible = (not rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'), ) maxpitch_txtbox = gr.Textbox( label = "Max pitch:", info = "Specify max pitch for inference [NOTE][OCTAVE]", placeholder = "C6", visible = (rvc_globals.NotesOrHertz) and (f0method0.value != 'rmvpe'), interactive = True, ) with gr.Column(): file_index1 = gr.Textbox( label="Feature search database file path:", value="", interactive=True, ) with gr.Accordion(label = "Custom f0 [Root pitch] File", open = False): f0_file = gr.File(label="F0 curve file (optional). One pitch per line. Replaces the default F0 and pitch modulation:") f0method0.change( fn=lambda radio: ( { "visible": radio in ['mangio-crepe', 'mangio-crepe-tiny'], "__type__": "update" } ), inputs=[f0method0], outputs=[crepe_hop_length] ) f0method0.change( fn=switch_pitch_controls, inputs=[f0method0], outputs=[minpitch_slider, minpitch_txtbox, maxpitch_slider, maxpitch_txtbox] ) with gr.Column(): resample_sr0 = gr.Slider( minimum=0, maximum=48000, label="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:", value=0, step=1, interactive=True, ) rms_mix_rate0 = gr.Slider( minimum=0, maximum=1, label="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used:", value=0.25, interactive=True, ) protect0 = gr.Slider( minimum=0, maximum=0.5, label="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:", value=0.33, step=0.01, interactive=True, ) formanting = gr.Checkbox( value=bool(DoFormant), label="Formant shift inference audio", info="Used for male to female and vice-versa conversions", interactive=True, visible=True, ) formant_preset = gr.Dropdown( value='', choices=get_fshift_presets(), label="Browse presets for formanting", info="Presets are located in formantshiftcfg/ folder", visible=bool(DoFormant), ) formant_refresh_button = gr.Button( value='\U0001f504', visible=bool(DoFormant), variant='primary', ) qfrency = gr.Slider( value=Quefrency, info="Default value is 1.0", label="Quefrency for formant shifting", minimum=0.0, maximum=16.0, step=0.1, visible=bool(DoFormant), interactive=True, ) tmbre = gr.Slider( value=Timbre, info="Default value is 1.0", label="Timbre for formant shifting", minimum=0.0, maximum=16.0, step=0.1, visible=bool(DoFormant), interactive=True, ) frmntbut = gr.Button( "Apply", variant="primary", visible=bool(DoFormant) ) formant_preset.change( fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre], ) formanting.change( fn=formant_enabled, inputs=[ formanting, qfrency, tmbre, frmntbut, formant_preset, formant_refresh_button, ], outputs=[ formanting, qfrency, tmbre, frmntbut, formant_preset, formant_refresh_button, ], ) frmntbut.click( fn=formant_apply, inputs=[qfrency, tmbre], outputs=[qfrency, tmbre], ) formant_refresh_button.click( fn=update_fshift_presets, inputs=[formant_preset, qfrency, tmbre], outputs=[formant_preset, qfrency, tmbre], ) # Function to toggle advanced settings def toggle_advanced_settings(checkbox): return {"visible": checkbox, "__type__": "update"} # Attach the change event advanced_settings_checkbox.change( fn=toggle_advanced_settings, inputs=[advanced_settings_checkbox], outputs=[advanced_settings] ) but0 = gr.Button("Convert", variant="primary").style(full_width=True) with gr.Row(): # Defines output info + output audio download after conversion vc_output1 = gr.Textbox(label="Output information:") vc_output2 = gr.Audio(label="Export audio (click on the three dots in the lower right corner to download)") with gr.Group(): # I think this defines the big convert button with gr.Row(): but0.click( vc.vc_single, [ spk_item, input_audio0, input_audio1, vc_transform0, f0_file, f0method0, file_index1, file_index2, index_rate1, filter_radius0, resample_sr0, rms_mix_rate0, protect0, crepe_hop_length, minpitch_slider, minpitch_txtbox, maxpitch_slider, maxpitch_txtbox, f0_autotune ], [vc_output1, vc_output2], ) with gr.TabItem(i18n("Batch")): # Dont Change with gr.Group(): # Markdown explanation of batch inference gr.Markdown( value=i18n("Batch conversion. Enter the folder containing the audio files to be converted or upload multiple audio files. The converted audio will be output in the specified folder (default: 'opt').") ) with gr.Row(): with gr.Column(): vc_transform1 = gr.Number( label=i18n("Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):"), value=0 ) opt_input = gr.Textbox(label=i18n("Specify output folder:"), value="opt") with gr.Column(): file_index4 = gr.Dropdown( label=i18n("Auto-detect index path and select from the dropdown:"), choices=get_indexes(), value=best_match_index_path1, interactive=True, ) sid0.select(fn=match_index, inputs=[sid0], outputs=[file_index2, file_index4]) refresh_button.click( fn=lambda: change_choices()[1], inputs=[], outputs=file_index4, ) index_rate2 = gr.Slider( minimum=0, maximum=1, label=i18n("Search feature ratio:"), value=0.75, interactive=True, ) with gr.Row(): dir_input = gr.Textbox( label=i18n("Enter the path of the audio folder to be processed (copy it from the address bar of the file manager):"), value=os.path.join(now_dir, "audios"), ) inputs = gr.File( file_count="multiple", label=i18n("You can also input audio files in batches. Choose one of the two options. Priority is given to reading from the folder.") ) with gr.Row(): with gr.Column(): # Create a checkbox for advanced batch settings advanced_settings_batch_checkbox = gr.Checkbox( value=False, label=i18n("Advanced Settings"), interactive=True, ) # Advanced batch settings container with gr.Row(visible=False) as advanced_settings_batch: # Initially hidden with gr.Row(label = i18n("Advanced Settings"), open = False): with gr.Column(): file_index3 = gr.Textbox( label=i18n("Feature search database file path:"), value="", interactive=True, ) f0method1 = gr.Radio( label=i18n( "Select the pitch extraction algorithm:" ), choices=["pm", "harvest", "crepe", "rmvpe"], value="rmvpe", interactive=True, ) f0_autotune = gr.Checkbox( label="Enable autotune", interactive=True ) filter_radius1 = gr.Slider( minimum=0, maximum=7, label=i18n("If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness."), value=3, step=1, interactive=True, ) with gr.Row(): format1 = gr.Radio( label=i18n("Export file format"), choices=["wav", "flac", "mp3", "m4a"], value="wav", interactive=True, ) with gr.Column(): resample_sr1 = gr.Slider( minimum=0, maximum=48000, label=i18n("Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:"), value=0, step=1, interactive=True, ) rms_mix_rate1 = gr.Slider( minimum=0, maximum=1, label=i18n("Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used:"), value=1, interactive=True, ) protect1 = gr.Slider( minimum=0, maximum=0.5, label=i18n( "Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:" ), value=0.33, step=0.01, interactive=True, ) vc_output3 = gr.Textbox(label=i18n("Output information:")) but1 = gr.Button(i18n("Convert"), variant="primary") but1.click( vc.vc_multi, [ spk_item, dir_input, opt_input, inputs, vc_transform1, f0method1, file_index3, file_index4, index_rate2, filter_radius1, resample_sr1, rms_mix_rate1, protect1, format1, crepe_hop_length, minpitch_slider if (not rvc_globals.NotesOrHertz) else minpitch_txtbox, maxpitch_slider if (not rvc_globals.NotesOrHertz) else maxpitch_txtbox, f0_autotune ], [vc_output3], ) sid0.change( fn=vc.get_vc, inputs=[sid0, protect0, protect1], outputs=[spk_item, protect0, protect1], ) if not sid0.value == '': spk_item, protect0, protect1 = vc.get_vc(sid0.value, protect0, protect1) #spk_item, protect0, protect1 = vc.get_vc(sid0.value, protect0, protect1) # Function to toggle advanced settings def toggle_advanced_settings_batch(checkbox): return {"visible": checkbox, "__type__": "update"} # Attach the change event advanced_settings_batch_checkbox.change( fn=toggle_advanced_settings_batch, inputs=[advanced_settings_batch_checkbox], outputs=[advanced_settings_batch] ) with gr.Accordion(label="f0method8", visible=False): #Don't Remove with gr.Row(): with gr.Column(): f0method8 = gr.Radio( choices=["pm", "harvest", "dio", "crepe", "mangio-crepe", "rmvpe", "rmvpe_gpu"], value="rmvpe", interactive=True, ) with gr.TabItem("TTS"): with gr.Group(): with gr.Column(): text_test = gr.Textbox(label="Text:", placeholder="Enter the text you want to convert to voice...", value=def_text, lines=6) with gr.Group(): with gr.Column(): model_voice_path07 = gr.Dropdown(label='RVC Model:', choices=sorted(names), value=default_weight) best_match_index_path1 = match_index(model_voice_path07.value) file_index2_07 = gr.Dropdown( label='Select the .index file (**เลือกให้ตรงกับ Model ที่เลือกไว้**):', choices=get_indexes(), value=def_index, interactive=True, allow_custom_value=True, ) with gr.Row(): with gr.Column(): tts_methods_voice = ["Edge-tts"] ttsmethod_test = gr.Dropdown(tts_methods_voice, value='Edge-tts', label = 'TTS Method:', visible=False) tts_test = gr.Dropdown(set_edge_voice, label = 'TTS Model:', value='th-TH-NiwatNeural-Male', visible=True) ttsmethod_test.change( fn=update_tts_methods_voice, inputs=ttsmethod_test, outputs=tts_test, ) with gr.Row(): refresh_button_ = gr.Button("Refresh", variant="primary") refresh_button_.click(fn=change_choices2, inputs=[], outputs=[model_voice_path07, file_index2_07]) with gr.Row(): original_ttsvoice = gr.Audio(label='Audio TTS:') ttsvoice = gr.Audio(label='Audio RVC:') with gr.Row(): button_test = gr.Button("Convert", variant="primary") button_test.click(make_test, inputs=[ text_test, tts_test, model_voice_path07, file_index2_07, vc_transform0, f0method8, index_rate1, crepe_hop_length, f0_autotune, ttsmethod_test ], outputs=[ttsvoice, original_ttsvoice]) with gr.TabItem("Resources"): gr.Markdown(f"Limit Download Size is {os.getenv('MAX_DOWNLOAD_SIZE')} MB, duplicate the space for modify the limit") easy_infer.download_model() easy_infer.download_audio() # https://huggingface.co/oItsMineZ/oItsMineZ-RVC-Model/resolve/main/DaengGuitar/DaengGuitar.zip with gr.TabItem("Settings"): with gr.Row(): gr.Markdown(value="Pitch settings") noteshertz = gr.Checkbox( label = "Whether to use note names instead of their hertz value. E.G. [C5, D6] instead of [523.25, 1174.66]Hz", value = rvc_globals.NotesOrHertz, interactive = True, ) noteshertz.change(fn=lambda nhertz: rvc_globals.__setattr__('NotesOrHertz', nhertz), inputs=[noteshertz], outputs=[]) noteshertz.change( fn=switch_pitch_controls, inputs=[f0method0], outputs=[ minpitch_slider, minpitch_txtbox, maxpitch_slider, maxpitch_txtbox,] ) return app def GradioRun(app): share_gradio_link = config.iscolab or config.paperspace concurrency_count = 511 max_size = 1022 if ( config.iscolab or config.paperspace ): app.queue(concurrency_count=concurrency_count, max_size=max_size).launch() else: app.queue(concurrency_count=concurrency_count, max_size=max_size).launch() if __name__ == "__main__": app = GradioSetup(UTheme=config.grtheme) GradioRun(app)