Spaces:
Running
Running
Upload 72 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .env +7 -0
- .gitattributes +4 -0
- LazyImport.py +13 -0
- README.md +8 -9
- assets/hubert/.gitignore +2 -0
- assets/rmvpe/.gitignore +2 -0
- assets/weights/.gitignore +2 -0
- audios/.gitignore +0 -0
- configs/32k.json +50 -0
- configs/32k_v2.json +50 -0
- configs/40k.json +50 -0
- configs/48k.json +50 -0
- configs/48k_v2.json +50 -0
- configs/config.json +15 -0
- configs/config.py +265 -0
- configs/v1/32k.json +46 -0
- configs/v1/40k.json +46 -0
- configs/v1/48k.json +46 -0
- configs/v2/32k.json +46 -0
- configs/v2/48k.json +46 -0
- csvdb/formanting.csv +0 -0
- csvdb/stop.csv +0 -0
- easy_infer.py +638 -0
- formantshiftcfg/Put your formantshift presets here as a txt file +0 -0
- formantshiftcfg/f2m.txt +2 -0
- formantshiftcfg/m2f.txt +2 -0
- formantshiftcfg/random.txt +2 -0
- infer/lib/audio.py +197 -0
- infer/lib/csvutil.py +41 -0
- infer/lib/infer_pack/attentions.py +417 -0
- infer/lib/infer_pack/commons.py +167 -0
- infer/lib/infer_pack/models.py +1174 -0
- infer/lib/infer_pack/models_onnx.py +824 -0
- infer/lib/infer_pack/modules.py +521 -0
- infer/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py +91 -0
- infer/lib/infer_pack/modules/F0Predictor/F0Predictor.py +16 -0
- infer/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py +87 -0
- infer/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py +98 -0
- infer/lib/infer_pack/modules/F0Predictor/__init__.py +0 -0
- infer/lib/infer_pack/onnx_inference.py +149 -0
- infer/lib/infer_pack/transforms.py +207 -0
- infer/lib/rmvpe.py +717 -0
- infer/modules/vc/__init__.py +0 -0
- infer/modules/vc/modules.py +526 -0
- infer/modules/vc/pipeline.py +655 -0
- infer/modules/vc/utils.py +42 -0
- lib/globals/globals.py +5 -0
- lib/infer_pack/attentions.py +417 -0
- lib/infer_pack/commons.py +166 -0
- lib/infer_pack/models.py +1144 -0
.env
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OPENBLAS_NUM_THREADS = 1
|
2 |
+
no_proxy = localhost, 127.0.0.1, ::1
|
3 |
+
|
4 |
+
# You can change the location of the model, etc. by changing here
|
5 |
+
weight_root = weights
|
6 |
+
index_root = logs
|
7 |
+
rmvpe_root = assets/rmvpe
|
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
logs/DaengGuitar/added_IVF473_Flat_nprobe_1_daengguitar_v2.index filter=lfs diff=lfs merge=lfs -text
|
37 |
+
logs/TAEEXZENFIRE/added_IVF340_Flat_nprobe_1_taeexzenfire_v2.index filter=lfs diff=lfs merge=lfs -text
|
38 |
+
logs/ท่านศาสดา/added_IVF109_Flat_nprobe_1_sadsada_v2.index filter=lfs diff=lfs merge=lfs -text
|
39 |
+
stftpitchshift filter=lfs diff=lfs merge=lfs -text
|
LazyImport.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib.util import find_spec, LazyLoader, module_from_spec
|
2 |
+
from sys import modules
|
3 |
+
|
4 |
+
def lazyload(name):
|
5 |
+
if name in modules:
|
6 |
+
return modules[name]
|
7 |
+
else:
|
8 |
+
spec = find_spec(name)
|
9 |
+
loader = LazyLoader(spec.loader)
|
10 |
+
module = module_from_spec(spec)
|
11 |
+
modules[name] = module
|
12 |
+
loader.exec_module(module)
|
13 |
+
return module
|
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
---
|
2 |
-
title: RVC
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
-
pinned:
|
10 |
-
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: oItsMinez's RVC v2 WebUI
|
3 |
+
emoji: 🎙️
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.43.2
|
8 |
app_file: app.py
|
9 |
+
pinned: true
|
10 |
+
short_description: Use oItsMineZ's RVC v2 Model with WebUI (For Vocal to Vocal)
|
11 |
+
---
|
|
assets/hubert/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/rmvpe/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/weights/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
audios/.gitignore
ADDED
File without changes
|
configs/32k.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": false,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
38 |
+
"resblock_dilation_sizes": [
|
39 |
+
[1, 3, 5],
|
40 |
+
[1, 3, 5],
|
41 |
+
[1, 3, 5]
|
42 |
+
],
|
43 |
+
"upsample_rates": [10, 4, 2, 2, 2],
|
44 |
+
"upsample_initial_channel": 512,
|
45 |
+
"upsample_kernel_sizes": [16, 16, 4, 4, 4],
|
46 |
+
"use_spectral_norm": false,
|
47 |
+
"gin_channels": 256,
|
48 |
+
"spk_embed_dim": 109
|
49 |
+
}
|
50 |
+
}
|
configs/32k_v2.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
38 |
+
"resblock_dilation_sizes": [
|
39 |
+
[1, 3, 5],
|
40 |
+
[1, 3, 5],
|
41 |
+
[1, 3, 5]
|
42 |
+
],
|
43 |
+
"upsample_rates": [10, 8, 2, 2],
|
44 |
+
"upsample_initial_channel": 512,
|
45 |
+
"upsample_kernel_sizes": [20, 16, 4, 4],
|
46 |
+
"use_spectral_norm": false,
|
47 |
+
"gin_channels": 256,
|
48 |
+
"spk_embed_dim": 109
|
49 |
+
}
|
50 |
+
}
|
configs/40k.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": false,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 40000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 400,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 125,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
38 |
+
"resblock_dilation_sizes": [
|
39 |
+
[1, 3, 5],
|
40 |
+
[1, 3, 5],
|
41 |
+
[1, 3, 5]
|
42 |
+
],
|
43 |
+
"upsample_rates": [10, 10, 2, 2],
|
44 |
+
"upsample_initial_channel": 512,
|
45 |
+
"upsample_kernel_sizes": [16, 16, 4, 4],
|
46 |
+
"use_spectral_norm": false,
|
47 |
+
"gin_channels": 256,
|
48 |
+
"spk_embed_dim": 109
|
49 |
+
}
|
50 |
+
}
|
configs/48k.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": false,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 11520,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
38 |
+
"resblock_dilation_sizes": [
|
39 |
+
[1, 3, 5],
|
40 |
+
[1, 3, 5],
|
41 |
+
[1, 3, 5]
|
42 |
+
],
|
43 |
+
"upsample_rates": [10, 6, 2, 2, 2],
|
44 |
+
"upsample_initial_channel": 512,
|
45 |
+
"upsample_kernel_sizes": [16, 16, 4, 4, 4],
|
46 |
+
"use_spectral_norm": false,
|
47 |
+
"gin_channels": 256,
|
48 |
+
"spk_embed_dim": 109
|
49 |
+
}
|
50 |
+
}
|
configs/48k_v2.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 17280,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3, 7, 11],
|
38 |
+
"resblock_dilation_sizes": [
|
39 |
+
[1, 3, 5],
|
40 |
+
[1, 3, 5],
|
41 |
+
[1, 3, 5]
|
42 |
+
],
|
43 |
+
"upsample_rates": [12, 10, 2, 2],
|
44 |
+
"upsample_initial_channel": 512,
|
45 |
+
"upsample_kernel_sizes": [24, 20, 4, 4],
|
46 |
+
"use_spectral_norm": false,
|
47 |
+
"gin_channels": 256,
|
48 |
+
"spk_embed_dim": 109
|
49 |
+
}
|
50 |
+
}
|
configs/config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pth_path": "assets/weights/kikiV1.pth",
|
3 |
+
"index_path": "logs/kikiV1.index",
|
4 |
+
"sg_input_device": "VoiceMeeter Output (VB-Audio Vo (MME)",
|
5 |
+
"sg_output_device": "VoiceMeeter Aux Input (VB-Audio (MME)",
|
6 |
+
"threhold": -45.0,
|
7 |
+
"pitch": 12.0,
|
8 |
+
"index_rate": 0.0,
|
9 |
+
"rms_mix_rate": 0.0,
|
10 |
+
"block_time": 0.25,
|
11 |
+
"crossfade_length": 0.04,
|
12 |
+
"extra_time": 2.0,
|
13 |
+
"n_cpu": 6.0,
|
14 |
+
"f0method": "rmvpe"
|
15 |
+
}
|
configs/config.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
from multiprocessing import cpu_count
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
try:
|
10 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
11 |
+
if torch.xpu.is_available():
|
12 |
+
from infer.modules.ipex import ipex_init
|
13 |
+
ipex_init()
|
14 |
+
except Exception:
|
15 |
+
pass
|
16 |
+
|
17 |
+
import logging
|
18 |
+
|
19 |
+
logger = logging.getLogger(__name__)
|
20 |
+
|
21 |
+
|
22 |
+
version_config_list = [
|
23 |
+
"v1/32k.json",
|
24 |
+
"v1/40k.json",
|
25 |
+
"v1/48k.json",
|
26 |
+
"v2/48k.json",
|
27 |
+
"v2/32k.json",
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
def singleton_variable(func):
|
32 |
+
def wrapper(*args, **kwargs):
|
33 |
+
if not wrapper.instance:
|
34 |
+
wrapper.instance = func(*args, **kwargs)
|
35 |
+
return wrapper.instance
|
36 |
+
|
37 |
+
wrapper.instance = None
|
38 |
+
return wrapper
|
39 |
+
|
40 |
+
|
41 |
+
@singleton_variable
|
42 |
+
class Config:
|
43 |
+
def __init__(self):
|
44 |
+
self.device = "cuda:0"
|
45 |
+
self.is_half = True
|
46 |
+
self.n_cpu = 0
|
47 |
+
self.gpu_name = None
|
48 |
+
self.json_config = self.load_config_json()
|
49 |
+
self.gpu_mem = None
|
50 |
+
(
|
51 |
+
self.python_cmd,
|
52 |
+
self.listen_port,
|
53 |
+
self.iscolab,
|
54 |
+
self.noparallel,
|
55 |
+
self.noautoopen,
|
56 |
+
self.paperspace,
|
57 |
+
self.is_cli,
|
58 |
+
self.grtheme,
|
59 |
+
self.dml,
|
60 |
+
) = self.arg_parse()
|
61 |
+
self.instead = ""
|
62 |
+
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def load_config_json() -> dict:
|
66 |
+
d = {}
|
67 |
+
for config_file in version_config_list:
|
68 |
+
with open(f"configs/{config_file}", "r") as f:
|
69 |
+
d[config_file] = json.load(f)
|
70 |
+
return d
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def arg_parse() -> tuple:
|
74 |
+
exe = sys.executable or "python"
|
75 |
+
parser = argparse.ArgumentParser()
|
76 |
+
parser.add_argument("--port", type=int, default=7865, help="Listen port")
|
77 |
+
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
|
78 |
+
parser.add_argument("--colab", action="store_true", help="Launch in colab")
|
79 |
+
parser.add_argument(
|
80 |
+
"--noparallel", action="store_true", help="Disable parallel processing"
|
81 |
+
)
|
82 |
+
parser.add_argument(
|
83 |
+
"--noautoopen",
|
84 |
+
action="store_true",
|
85 |
+
help="Do not open in browser automatically",
|
86 |
+
)
|
87 |
+
parser.add_argument(
|
88 |
+
"--paperspace",
|
89 |
+
action="store_true",
|
90 |
+
help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.",
|
91 |
+
)
|
92 |
+
parser.add_argument(
|
93 |
+
"--is_cli",
|
94 |
+
action="store_true",
|
95 |
+
help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!",
|
96 |
+
)
|
97 |
+
|
98 |
+
parser.add_argument(
|
99 |
+
"-t",
|
100 |
+
"--theme",
|
101 |
+
help = "Theme for Gradio. Format - `JohnSmith9982/small_and_pretty` (no backticks)",
|
102 |
+
default = "JohnSmith9982/small_and_pretty",
|
103 |
+
type = str
|
104 |
+
)
|
105 |
+
|
106 |
+
parser.add_argument(
|
107 |
+
"--dml",
|
108 |
+
action="store_true",
|
109 |
+
help="Use DirectML backend instead of CUDA."
|
110 |
+
)
|
111 |
+
|
112 |
+
cmd_opts = parser.parse_args()
|
113 |
+
|
114 |
+
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
|
115 |
+
|
116 |
+
return (
|
117 |
+
cmd_opts.pycmd,
|
118 |
+
cmd_opts.port,
|
119 |
+
cmd_opts.colab,
|
120 |
+
cmd_opts.noparallel,
|
121 |
+
cmd_opts.noautoopen,
|
122 |
+
cmd_opts.paperspace,
|
123 |
+
cmd_opts.is_cli,
|
124 |
+
cmd_opts.theme,
|
125 |
+
cmd_opts.dml,
|
126 |
+
)
|
127 |
+
|
128 |
+
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
|
129 |
+
# check `getattr` and try it for compatibility
|
130 |
+
@staticmethod
|
131 |
+
def has_mps() -> bool:
|
132 |
+
if not torch.backends.mps.is_available():
|
133 |
+
return False
|
134 |
+
try:
|
135 |
+
torch.zeros(1).to(torch.device("mps"))
|
136 |
+
return True
|
137 |
+
except Exception:
|
138 |
+
return False
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def has_xpu() -> bool:
|
142 |
+
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
143 |
+
return True
|
144 |
+
else:
|
145 |
+
return False
|
146 |
+
|
147 |
+
def use_fp32_config(self):
|
148 |
+
for config_file in version_config_list:
|
149 |
+
self.json_config[config_file]["train"]["fp16_run"] = False
|
150 |
+
|
151 |
+
def device_config(self) -> tuple:
|
152 |
+
if torch.cuda.is_available():
|
153 |
+
if self.has_xpu():
|
154 |
+
self.device = self.instead = "xpu:0"
|
155 |
+
self.is_half = True
|
156 |
+
i_device = int(self.device.split(":")[-1])
|
157 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
158 |
+
if (
|
159 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
160 |
+
or "P40" in self.gpu_name.upper()
|
161 |
+
or "P10" in self.gpu_name.upper()
|
162 |
+
or "1060" in self.gpu_name
|
163 |
+
or "1070" in self.gpu_name
|
164 |
+
or "1080" in self.gpu_name
|
165 |
+
):
|
166 |
+
logger.info("Found GPU %s, force to fp32", self.gpu_name)
|
167 |
+
self.is_half = False
|
168 |
+
self.use_fp32_config()
|
169 |
+
else:
|
170 |
+
logger.info("Found GPU %s", self.gpu_name)
|
171 |
+
self.gpu_mem = int(
|
172 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
173 |
+
/ 1024
|
174 |
+
/ 1024
|
175 |
+
/ 1024
|
176 |
+
+ 0.4
|
177 |
+
)
|
178 |
+
if self.gpu_mem <= 4:
|
179 |
+
with open("infer/modules/train/preprocess.py", "r") as f:
|
180 |
+
strr = f.read().replace("3.7", "3.0")
|
181 |
+
with open("infer/modules/train/preprocess.py", "w") as f:
|
182 |
+
f.write(strr)
|
183 |
+
elif self.has_mps():
|
184 |
+
logger.info("No supported Nvidia GPU found")
|
185 |
+
self.device = self.instead = "mps"
|
186 |
+
self.is_half = False
|
187 |
+
self.use_fp32_config()
|
188 |
+
else:
|
189 |
+
logger.info("No supported Nvidia GPU found")
|
190 |
+
self.device = self.instead = "cpu"
|
191 |
+
self.is_half = False
|
192 |
+
self.use_fp32_config()
|
193 |
+
|
194 |
+
if self.n_cpu == 0:
|
195 |
+
self.n_cpu = cpu_count()
|
196 |
+
|
197 |
+
if self.is_half:
|
198 |
+
# 6G显存配置
|
199 |
+
x_pad = 3
|
200 |
+
x_query = 10
|
201 |
+
x_center = 60
|
202 |
+
x_max = 65
|
203 |
+
else:
|
204 |
+
# 5G显存配置
|
205 |
+
x_pad = 1
|
206 |
+
x_query = 6
|
207 |
+
x_center = 38
|
208 |
+
x_max = 41
|
209 |
+
|
210 |
+
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
211 |
+
x_pad = 1
|
212 |
+
x_query = 5
|
213 |
+
x_center = 30
|
214 |
+
x_max = 32
|
215 |
+
if self.dml:
|
216 |
+
logger.info("Use DirectML instead")
|
217 |
+
if (
|
218 |
+
os.path.exists(
|
219 |
+
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
|
220 |
+
)
|
221 |
+
== False
|
222 |
+
):
|
223 |
+
try:
|
224 |
+
os.rename(
|
225 |
+
"runtime\Lib\site-packages\onnxruntime",
|
226 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
227 |
+
)
|
228 |
+
except:
|
229 |
+
pass
|
230 |
+
try:
|
231 |
+
os.rename(
|
232 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
233 |
+
"runtime\Lib\site-packages\onnxruntime",
|
234 |
+
)
|
235 |
+
except:
|
236 |
+
pass
|
237 |
+
# if self.device != "cpu":
|
238 |
+
import torch_directml
|
239 |
+
|
240 |
+
self.device = torch_directml.device(torch_directml.default_device())
|
241 |
+
self.is_half = False
|
242 |
+
else:
|
243 |
+
if self.instead:
|
244 |
+
logger.info(f"Use {self.instead} instead")
|
245 |
+
if (
|
246 |
+
os.path.exists(
|
247 |
+
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
|
248 |
+
)
|
249 |
+
== False
|
250 |
+
):
|
251 |
+
try:
|
252 |
+
os.rename(
|
253 |
+
"runtime\Lib\site-packages\onnxruntime",
|
254 |
+
"runtime\Lib\site-packages\onnxruntime-dml",
|
255 |
+
)
|
256 |
+
except:
|
257 |
+
pass
|
258 |
+
try:
|
259 |
+
os.rename(
|
260 |
+
"runtime\Lib\site-packages\onnxruntime-cuda",
|
261 |
+
"runtime\Lib\site-packages\onnxruntime",
|
262 |
+
)
|
263 |
+
except:
|
264 |
+
pass
|
265 |
+
return x_pad, x_query, x_center, x_max
|
configs/v1/32k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,4,2,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v1/40k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 40000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 400,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 125,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,10,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v1/48k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 11520,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,6,2,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [16,16,4,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v2/32k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 12800,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 32000,
|
21 |
+
"filter_length": 1024,
|
22 |
+
"hop_length": 320,
|
23 |
+
"win_length": 1024,
|
24 |
+
"n_mel_channels": 80,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [10,8,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [20,16,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
configs/v2/48k.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": {
|
3 |
+
"log_interval": 200,
|
4 |
+
"seed": 1234,
|
5 |
+
"epochs": 20000,
|
6 |
+
"learning_rate": 1e-4,
|
7 |
+
"betas": [0.8, 0.99],
|
8 |
+
"eps": 1e-9,
|
9 |
+
"batch_size": 4,
|
10 |
+
"fp16_run": true,
|
11 |
+
"lr_decay": 0.999875,
|
12 |
+
"segment_size": 17280,
|
13 |
+
"init_lr_ratio": 1,
|
14 |
+
"warmup_epochs": 0,
|
15 |
+
"c_mel": 45,
|
16 |
+
"c_kl": 1.0
|
17 |
+
},
|
18 |
+
"data": {
|
19 |
+
"max_wav_value": 32768.0,
|
20 |
+
"sampling_rate": 48000,
|
21 |
+
"filter_length": 2048,
|
22 |
+
"hop_length": 480,
|
23 |
+
"win_length": 2048,
|
24 |
+
"n_mel_channels": 128,
|
25 |
+
"mel_fmin": 0.0,
|
26 |
+
"mel_fmax": null
|
27 |
+
},
|
28 |
+
"model": {
|
29 |
+
"inter_channels": 192,
|
30 |
+
"hidden_channels": 192,
|
31 |
+
"filter_channels": 768,
|
32 |
+
"n_heads": 2,
|
33 |
+
"n_layers": 6,
|
34 |
+
"kernel_size": 3,
|
35 |
+
"p_dropout": 0,
|
36 |
+
"resblock": "1",
|
37 |
+
"resblock_kernel_sizes": [3,7,11],
|
38 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
39 |
+
"upsample_rates": [12,10,2,2],
|
40 |
+
"upsample_initial_channel": 512,
|
41 |
+
"upsample_kernel_sizes": [24,20,4,4],
|
42 |
+
"use_spectral_norm": false,
|
43 |
+
"gin_channels": 256,
|
44 |
+
"spk_embed_dim": 109
|
45 |
+
}
|
46 |
+
}
|
csvdb/formanting.csv
ADDED
File without changes
|
csvdb/stop.csv
ADDED
File without changes
|
easy_infer.py
ADDED
@@ -0,0 +1,638 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import errno
|
5 |
+
import shutil
|
6 |
+
from mega import Mega
|
7 |
+
import datetime
|
8 |
+
import unicodedata
|
9 |
+
import torch
|
10 |
+
import glob
|
11 |
+
import gradio as gr
|
12 |
+
import gdown
|
13 |
+
import zipfile
|
14 |
+
import traceback
|
15 |
+
import json
|
16 |
+
import requests
|
17 |
+
import wget
|
18 |
+
import ffmpeg
|
19 |
+
import hashlib
|
20 |
+
now_dir = os.getcwd()
|
21 |
+
sys.path.append(now_dir)
|
22 |
+
from unidecode import unidecode
|
23 |
+
import re
|
24 |
+
import time
|
25 |
+
from infer.modules.vc.pipeline import Pipeline
|
26 |
+
VC = Pipeline
|
27 |
+
from lib.infer_pack.models import (
|
28 |
+
SynthesizerTrnMs256NSFsid,
|
29 |
+
SynthesizerTrnMs256NSFsid_nono,
|
30 |
+
SynthesizerTrnMs768NSFsid,
|
31 |
+
SynthesizerTrnMs768NSFsid_nono,
|
32 |
+
)
|
33 |
+
from configs.config import Config
|
34 |
+
from huggingface_hub import HfApi, list_models
|
35 |
+
from huggingface_hub import login
|
36 |
+
from bs4 import BeautifulSoup
|
37 |
+
from sklearn.cluster import MiniBatchKMeans
|
38 |
+
from dotenv import load_dotenv
|
39 |
+
load_dotenv()
|
40 |
+
config = Config()
|
41 |
+
tmp = os.path.join(now_dir, "TEMP")
|
42 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
43 |
+
os.environ["TEMP"] = tmp
|
44 |
+
weight_root = os.getenv("weight_root")
|
45 |
+
index_root = os.getenv("index_root")
|
46 |
+
audio_root = "audios"
|
47 |
+
names = []
|
48 |
+
for name in os.listdir(weight_root):
|
49 |
+
if name.endswith(".pth"):
|
50 |
+
names.append(name)
|
51 |
+
index_paths = []
|
52 |
+
|
53 |
+
global indexes_list
|
54 |
+
indexes_list = []
|
55 |
+
|
56 |
+
audio_paths = []
|
57 |
+
|
58 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
59 |
+
for name in files:
|
60 |
+
if name.endswith(".index") and "trained" not in name:
|
61 |
+
index_paths.append("%s\\%s" % (root, name))
|
62 |
+
|
63 |
+
for root, dirs, files in os.walk(audio_root, topdown=False):
|
64 |
+
for name in files:
|
65 |
+
audio_paths.append("%s/%s" % (root, name))
|
66 |
+
|
67 |
+
def calculate_md5(file_path):
|
68 |
+
hash_md5 = hashlib.md5()
|
69 |
+
with open(file_path, "rb") as f:
|
70 |
+
for chunk in iter(lambda: f.read(4096), b""):
|
71 |
+
hash_md5.update(chunk)
|
72 |
+
return hash_md5.hexdigest()
|
73 |
+
|
74 |
+
def format_title(title):
|
75 |
+
formatted_title = re.sub(r'[^\w\s-]', '', title)
|
76 |
+
formatted_title = formatted_title.replace(" ", "_")
|
77 |
+
return formatted_title
|
78 |
+
|
79 |
+
def silentremove(filename):
|
80 |
+
try:
|
81 |
+
os.remove(filename)
|
82 |
+
except OSError as e:
|
83 |
+
if e.errno != errno.ENOENT:
|
84 |
+
raise
|
85 |
+
def get_md5(temp_folder):
|
86 |
+
for root, subfolders, files in os.walk(temp_folder):
|
87 |
+
for file in files:
|
88 |
+
if not file.startswith("G_") and not file.startswith("D_") and file.endswith(".pth") and not "_G_" in file and not "_D_" in file:
|
89 |
+
md5_hash = calculate_md5(os.path.join(root, file))
|
90 |
+
return md5_hash
|
91 |
+
|
92 |
+
return None
|
93 |
+
|
94 |
+
def find_parent(search_dir, file_name):
|
95 |
+
for dirpath, dirnames, filenames in os.walk(search_dir):
|
96 |
+
if file_name in filenames:
|
97 |
+
return os.path.abspath(dirpath)
|
98 |
+
return None
|
99 |
+
|
100 |
+
def find_folder_parent(search_dir, folder_name):
|
101 |
+
for dirpath, dirnames, filenames in os.walk(search_dir):
|
102 |
+
if folder_name in dirnames:
|
103 |
+
return os.path.abspath(dirpath)
|
104 |
+
return None
|
105 |
+
|
106 |
+
def delete_large_files(directory_path, max_size_megabytes):
|
107 |
+
for filename in os.listdir(directory_path):
|
108 |
+
file_path = os.path.join(directory_path, filename)
|
109 |
+
if os.path.isfile(file_path):
|
110 |
+
size_in_bytes = os.path.getsize(file_path)
|
111 |
+
size_in_megabytes = size_in_bytes / (1024 * 1024) # Convert bytes to megabytes
|
112 |
+
|
113 |
+
if size_in_megabytes > max_size_megabytes:
|
114 |
+
print("###################################")
|
115 |
+
print(f"Deleting s*** {filename} (Size: {size_in_megabytes:.2f} MB)")
|
116 |
+
os.remove(file_path)
|
117 |
+
print("###################################")
|
118 |
+
|
119 |
+
def download_from_url(url):
|
120 |
+
parent_path = find_folder_parent(".", "pretrained_v2")
|
121 |
+
zips_path = os.path.join(parent_path, 'zips')
|
122 |
+
print(f"Limit download size in MB {os.getenv('MAX_DOWNLOAD_SIZE')}, duplicate the space for modify the limit")
|
123 |
+
|
124 |
+
if url != '':
|
125 |
+
print("Downloading the file: " + f"{url}")
|
126 |
+
if "drive.google.com" in url:
|
127 |
+
if "file/d/" in url:
|
128 |
+
file_id = url.split("file/d/")[1].split("/")[0]
|
129 |
+
elif "id=" in url:
|
130 |
+
file_id = url.split("id=")[1].split("&")[0]
|
131 |
+
else:
|
132 |
+
return None
|
133 |
+
|
134 |
+
if file_id:
|
135 |
+
os.chdir('./zips')
|
136 |
+
result = subprocess.run(["gdown", f"https://drive.google.com/uc?id={file_id}", "--fuzzy"], capture_output=True, text=True, encoding='utf-8')
|
137 |
+
if "Too many users have viewed or downloaded this file recently" in str(result.stderr):
|
138 |
+
return "too much use"
|
139 |
+
if "Cannot retrieve the public link of the file." in str(result.stderr):
|
140 |
+
return "private link"
|
141 |
+
print(result.stderr)
|
142 |
+
|
143 |
+
elif "/blob/" in url:
|
144 |
+
os.chdir('./zips')
|
145 |
+
url = url.replace("blob", "resolve")
|
146 |
+
response = requests.get(url)
|
147 |
+
if response.status_code == 200:
|
148 |
+
file_name = url.split('/')[-1]
|
149 |
+
with open(os.path.join(zips_path, file_name), "wb") as newfile:
|
150 |
+
newfile.write(response.content)
|
151 |
+
else:
|
152 |
+
os.chdir(parent_path)
|
153 |
+
elif "mega.nz" in url:
|
154 |
+
if "#!" in url:
|
155 |
+
file_id = url.split("#!")[1].split("!")[0]
|
156 |
+
elif "file/" in url:
|
157 |
+
file_id = url.split("file/")[1].split("/")[0]
|
158 |
+
else:
|
159 |
+
return None
|
160 |
+
if file_id:
|
161 |
+
m = Mega()
|
162 |
+
m.download_url(url, zips_path)
|
163 |
+
elif "/tree/main" in url:
|
164 |
+
response = requests.get(url)
|
165 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
166 |
+
temp_url = ''
|
167 |
+
for link in soup.find_all('a', href=True):
|
168 |
+
if link['href'].endswith('.zip'):
|
169 |
+
temp_url = link['href']
|
170 |
+
break
|
171 |
+
if temp_url:
|
172 |
+
url = temp_url
|
173 |
+
url = url.replace("blob", "resolve")
|
174 |
+
if "huggingface.co" not in url:
|
175 |
+
url = "https://huggingface.co" + url
|
176 |
+
|
177 |
+
wget.download(url)
|
178 |
+
else:
|
179 |
+
print("No .zip file found on the page.")
|
180 |
+
elif "cdn.discordapp.com" in url:
|
181 |
+
file = requests.get(url)
|
182 |
+
if file.status_code == 200:
|
183 |
+
name = url.split('/')
|
184 |
+
with open(os.path.join(zips_path, name[len(name)-1]), "wb") as newfile:
|
185 |
+
newfile.write(file.content)
|
186 |
+
else:
|
187 |
+
return None
|
188 |
+
elif "pixeldrain.com" in url:
|
189 |
+
try:
|
190 |
+
file_id = url.split("pixeldrain.com/u/")[1]
|
191 |
+
os.chdir('./zips')
|
192 |
+
print(file_id)
|
193 |
+
response = requests.get(f"https://pixeldrain.com/api/file/{file_id}")
|
194 |
+
if response.status_code == 200:
|
195 |
+
file_name = response.headers.get("Content-Disposition").split('filename=')[-1].strip('";')
|
196 |
+
if not os.path.exists(zips_path):
|
197 |
+
os.makedirs(zips_path)
|
198 |
+
with open(os.path.join(zips_path, file_name), "wb") as newfile:
|
199 |
+
newfile.write(response.content)
|
200 |
+
os.chdir(parent_path)
|
201 |
+
return "downloaded"
|
202 |
+
else:
|
203 |
+
os.chdir(parent_path)
|
204 |
+
return None
|
205 |
+
except Exception as e:
|
206 |
+
print(e)
|
207 |
+
os.chdir(parent_path)
|
208 |
+
return None
|
209 |
+
else:
|
210 |
+
os.chdir('./zips')
|
211 |
+
wget.download(url)
|
212 |
+
delete_large_files(zips_path, int(os.getenv("MAX_DOWNLOAD_SIZE")))
|
213 |
+
os.chdir(parent_path)
|
214 |
+
print("Full download")
|
215 |
+
return "downloaded"
|
216 |
+
else:
|
217 |
+
return None
|
218 |
+
|
219 |
+
class error_message(Exception):
|
220 |
+
def __init__(self, mensaje):
|
221 |
+
self.mensaje = mensaje
|
222 |
+
super().__init__(mensaje)
|
223 |
+
|
224 |
+
def get_vc(sid, to_return_protect0, to_return_protect1):
|
225 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version
|
226 |
+
if sid == "" or sid == []:
|
227 |
+
global hubert_model
|
228 |
+
if hubert_model is not None:
|
229 |
+
print("clean_empty_cache")
|
230 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr
|
231 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
232 |
+
if torch.cuda.is_available():
|
233 |
+
torch.cuda.empty_cache()
|
234 |
+
if_f0 = cpt.get("f0", 1)
|
235 |
+
version = cpt.get("version", "v1")
|
236 |
+
if version == "v1":
|
237 |
+
if if_f0 == 1:
|
238 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
239 |
+
*cpt["config"], is_half=config.is_half
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
243 |
+
elif version == "v2":
|
244 |
+
if if_f0 == 1:
|
245 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
246 |
+
*cpt["config"], is_half=config.is_half
|
247 |
+
)
|
248 |
+
else:
|
249 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
250 |
+
del net_g, cpt
|
251 |
+
if torch.cuda.is_available():
|
252 |
+
torch.cuda.empty_cache()
|
253 |
+
cpt = None
|
254 |
+
return (
|
255 |
+
{"visible": False, "__type__": "update"},
|
256 |
+
{"visible": False, "__type__": "update"},
|
257 |
+
{"visible": False, "__type__": "update"},
|
258 |
+
)
|
259 |
+
person = "%s/%s" % (weight_root, sid)
|
260 |
+
print("loading %s" % person)
|
261 |
+
cpt = torch.load(person, map_location="cpu")
|
262 |
+
tgt_sr = cpt["config"][-1]
|
263 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
264 |
+
if_f0 = cpt.get("f0", 1)
|
265 |
+
if if_f0 == 0:
|
266 |
+
to_return_protect0 = to_return_protect1 = {
|
267 |
+
"visible": False,
|
268 |
+
"value": 0.5,
|
269 |
+
"__type__": "update",
|
270 |
+
}
|
271 |
+
else:
|
272 |
+
to_return_protect0 = {
|
273 |
+
"visible": True,
|
274 |
+
"value": to_return_protect0,
|
275 |
+
"__type__": "update",
|
276 |
+
}
|
277 |
+
to_return_protect1 = {
|
278 |
+
"visible": True,
|
279 |
+
"value": to_return_protect1,
|
280 |
+
"__type__": "update",
|
281 |
+
}
|
282 |
+
version = cpt.get("version", "v1")
|
283 |
+
if version == "v1":
|
284 |
+
if if_f0 == 1:
|
285 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
286 |
+
else:
|
287 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
288 |
+
elif version == "v2":
|
289 |
+
if if_f0 == 1:
|
290 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
291 |
+
else:
|
292 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
293 |
+
del net_g.enc_q
|
294 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
295 |
+
net_g.eval().to(config.device)
|
296 |
+
if config.is_half:
|
297 |
+
net_g = net_g.half()
|
298 |
+
else:
|
299 |
+
net_g = net_g.float()
|
300 |
+
vc = VC(tgt_sr, config)
|
301 |
+
n_spk = cpt["config"][-3]
|
302 |
+
return (
|
303 |
+
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
304 |
+
to_return_protect0,
|
305 |
+
to_return_protect1,
|
306 |
+
)
|
307 |
+
|
308 |
+
def load_downloaded_model(url):
|
309 |
+
parent_path = find_folder_parent(".", "pretrained_v2")
|
310 |
+
try:
|
311 |
+
infos = []
|
312 |
+
logs_folders = ['0_gt_wavs','1_16k_wavs','2a_f0','2b-f0nsf','3_feature256','3_feature768']
|
313 |
+
zips_path = os.path.join(parent_path, 'zips')
|
314 |
+
unzips_path = os.path.join(parent_path, 'unzips')
|
315 |
+
weights_path = os.path.join(parent_path, 'weights')
|
316 |
+
logs_dir = ""
|
317 |
+
|
318 |
+
if os.path.exists(zips_path):
|
319 |
+
shutil.rmtree(zips_path)
|
320 |
+
if os.path.exists(unzips_path):
|
321 |
+
shutil.rmtree(unzips_path)
|
322 |
+
|
323 |
+
os.mkdir(zips_path)
|
324 |
+
os.mkdir(unzips_path)
|
325 |
+
|
326 |
+
download_file = download_from_url(url)
|
327 |
+
if not download_file:
|
328 |
+
print("The file could not be downloaded.")
|
329 |
+
infos.append("The file could not be downloaded.")
|
330 |
+
yield "\n".join(infos)
|
331 |
+
elif download_file == "downloaded":
|
332 |
+
print("It has been downloaded successfully.")
|
333 |
+
infos.append("It has been downloaded successfully.")
|
334 |
+
yield "\n".join(infos)
|
335 |
+
elif download_file == "too much use":
|
336 |
+
raise Exception("Too many users have recently viewed or downloaded this file")
|
337 |
+
elif download_file == "private link":
|
338 |
+
raise Exception("Cannot get file from this private link")
|
339 |
+
|
340 |
+
for filename in os.listdir(zips_path):
|
341 |
+
if filename.endswith(".zip"):
|
342 |
+
zipfile_path = os.path.join(zips_path,filename)
|
343 |
+
print("Proceeding with the extraction...")
|
344 |
+
infos.append("Proceeding with the extraction...")
|
345 |
+
shutil.unpack_archive(zipfile_path, unzips_path, 'zip')
|
346 |
+
model_name = os.path.basename(zipfile_path)
|
347 |
+
logs_dir = os.path.join(parent_path,'logs', os.path.normpath(str(model_name).replace(".zip","")))
|
348 |
+
yield "\n".join(infos)
|
349 |
+
else:
|
350 |
+
print("Unzip error.")
|
351 |
+
infos.append("Unzip error.")
|
352 |
+
yield "\n".join(infos)
|
353 |
+
|
354 |
+
index_file = False
|
355 |
+
model_file = False
|
356 |
+
D_file = False
|
357 |
+
G_file = False
|
358 |
+
|
359 |
+
for path, subdirs, files in os.walk(unzips_path):
|
360 |
+
for item in files:
|
361 |
+
item_path = os.path.join(path, item)
|
362 |
+
if not 'G_' in item and not 'D_' in item and item.endswith('.pth'):
|
363 |
+
model_file = True
|
364 |
+
model_name = item.replace(".pth","")
|
365 |
+
logs_dir = os.path.join(parent_path,'logs', model_name)
|
366 |
+
if os.path.exists(logs_dir):
|
367 |
+
shutil.rmtree(logs_dir)
|
368 |
+
os.mkdir(logs_dir)
|
369 |
+
if not os.path.exists(weights_path):
|
370 |
+
os.mkdir(weights_path)
|
371 |
+
if os.path.exists(os.path.join(weights_path, item)):
|
372 |
+
os.remove(os.path.join(weights_path, item))
|
373 |
+
if os.path.exists(item_path):
|
374 |
+
shutil.move(item_path, weights_path)
|
375 |
+
|
376 |
+
if not model_file and not os.path.exists(logs_dir):
|
377 |
+
os.mkdir(logs_dir)
|
378 |
+
for path, subdirs, files in os.walk(unzips_path):
|
379 |
+
for item in files:
|
380 |
+
item_path = os.path.join(path, item)
|
381 |
+
if item.startswith('added_') and item.endswith('.index'):
|
382 |
+
index_file = True
|
383 |
+
if os.path.exists(item_path):
|
384 |
+
if os.path.exists(os.path.join(logs_dir, item)):
|
385 |
+
os.remove(os.path.join(logs_dir, item))
|
386 |
+
shutil.move(item_path, logs_dir)
|
387 |
+
if item.startswith('total_fea.npy') or item.startswith('events.'):
|
388 |
+
if os.path.exists(item_path):
|
389 |
+
if os.path.exists(os.path.join(logs_dir, item)):
|
390 |
+
os.remove(os.path.join(logs_dir, item))
|
391 |
+
shutil.move(item_path, logs_dir)
|
392 |
+
|
393 |
+
|
394 |
+
result = ""
|
395 |
+
if model_file:
|
396 |
+
if index_file:
|
397 |
+
print("The model works for inference, and has the .index file.")
|
398 |
+
infos.append("\n" + "The model works for inference, and has the .index file.")
|
399 |
+
yield "\n".join(infos)
|
400 |
+
else:
|
401 |
+
print("The model works for inference, but it doesn't have the .index file.")
|
402 |
+
infos.append("\n" + "The model works for inference, but it doesn't have the .index file.")
|
403 |
+
yield "\n".join(infos)
|
404 |
+
|
405 |
+
if not index_file and not model_file:
|
406 |
+
print("No relevant file was found to upload.")
|
407 |
+
infos.append("No relevant file was found to upload.")
|
408 |
+
yield "\n".join(infos)
|
409 |
+
|
410 |
+
if os.path.exists(zips_path):
|
411 |
+
shutil.rmtree(zips_path)
|
412 |
+
if os.path.exists(unzips_path):
|
413 |
+
shutil.rmtree(unzips_path)
|
414 |
+
os.chdir(parent_path)
|
415 |
+
return result
|
416 |
+
except Exception as e:
|
417 |
+
os.chdir(parent_path)
|
418 |
+
if "too much use" in str(e):
|
419 |
+
print("Too many users have recently viewed or downloaded this file")
|
420 |
+
yield "Too many users have recently viewed or downloaded this file"
|
421 |
+
elif "private link" in str(e):
|
422 |
+
print("Cannot get file from this private link")
|
423 |
+
yield "Cannot get file from this private link"
|
424 |
+
else:
|
425 |
+
print(e)
|
426 |
+
yield "An error occurred downloading"
|
427 |
+
finally:
|
428 |
+
os.chdir(parent_path)
|
429 |
+
|
430 |
+
def save_to_wav(record_button):
|
431 |
+
if record_button is None:
|
432 |
+
pass
|
433 |
+
else:
|
434 |
+
path_to_file=record_button
|
435 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
436 |
+
new_path='./audios/'+new_name
|
437 |
+
shutil.move(path_to_file,new_path)
|
438 |
+
return new_name
|
439 |
+
|
440 |
+
def change_choices2():
|
441 |
+
audio_paths=[]
|
442 |
+
for filename in os.listdir("./audios"):
|
443 |
+
if filename.endswith(('wav', 'mp3', 'flac', 'ogg', 'opus',
|
444 |
+
'm4a', 'mp4', 'aac', 'alac', 'wma',
|
445 |
+
'aiff', 'webm', 'ac3')):
|
446 |
+
audio_paths.append(os.path.join('./audios',filename).replace('\\', '/'))
|
447 |
+
return {"choices": sorted(audio_paths), "__type__": "update"}, {"__type__": "update"}
|
448 |
+
|
449 |
+
sup_audioext = {'wav', 'mp3', 'flac', 'ogg', 'opus',
|
450 |
+
'm4a', 'mp4', 'aac', 'alac', 'wma',
|
451 |
+
'aiff', 'webm', 'ac3'}
|
452 |
+
|
453 |
+
def load_downloaded_audio(url):
|
454 |
+
parent_path = find_folder_parent(".", "pretrained_v2")
|
455 |
+
try:
|
456 |
+
infos = []
|
457 |
+
audios_path = os.path.join(parent_path, 'audios')
|
458 |
+
zips_path = os.path.join(parent_path, 'zips')
|
459 |
+
|
460 |
+
if not os.path.exists(audios_path):
|
461 |
+
os.mkdir(audios_path)
|
462 |
+
|
463 |
+
download_file = download_from_url(url)
|
464 |
+
if not download_file:
|
465 |
+
print("The file could not be downloaded.")
|
466 |
+
infos.append("The file could not be downloaded.")
|
467 |
+
yield "\n".join(infos)
|
468 |
+
elif download_file == "downloaded":
|
469 |
+
print("It has been downloaded successfully.")
|
470 |
+
infos.append("It has been downloaded successfully.")
|
471 |
+
yield "\n".join(infos)
|
472 |
+
elif download_file == "too much use":
|
473 |
+
raise Exception("Too many users have recently viewed or downloaded this file")
|
474 |
+
elif download_file == "private link":
|
475 |
+
raise Exception("Cannot get file from this private link")
|
476 |
+
|
477 |
+
for filename in os.listdir(zips_path):
|
478 |
+
item_path = os.path.join(zips_path, filename)
|
479 |
+
if item_path.split('.')[-1] in sup_audioext:
|
480 |
+
if os.path.exists(item_path):
|
481 |
+
shutil.move(item_path, audios_path)
|
482 |
+
|
483 |
+
result = ""
|
484 |
+
print("Audio files have been moved to the 'audios' folder.")
|
485 |
+
infos.append("Audio files have been moved to the 'audios' folder.")
|
486 |
+
yield "\n".join(infos)
|
487 |
+
|
488 |
+
os.chdir(parent_path)
|
489 |
+
return result
|
490 |
+
except Exception as e:
|
491 |
+
os.chdir(parent_path)
|
492 |
+
if "too much use" in str(e):
|
493 |
+
print("Too many users have recently viewed or downloaded this file")
|
494 |
+
yield "Too many users have recently viewed or downloaded this file"
|
495 |
+
elif "private link" in str(e):
|
496 |
+
print("Cannot get file from this private link")
|
497 |
+
yield "Cannot get file from this private link"
|
498 |
+
else:
|
499 |
+
print(e)
|
500 |
+
yield "An error occurred downloading"
|
501 |
+
finally:
|
502 |
+
os.chdir(parent_path)
|
503 |
+
|
504 |
+
|
505 |
+
class error_message(Exception):
|
506 |
+
def __init__(self, mensaje):
|
507 |
+
self.mensaje = mensaje
|
508 |
+
super().__init__(mensaje)
|
509 |
+
|
510 |
+
def get_vc(sid, to_return_protect0, to_return_protect1):
|
511 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version
|
512 |
+
if sid == "" or sid == []:
|
513 |
+
global hubert_model
|
514 |
+
if hubert_model is not None:
|
515 |
+
print("clean_empty_cache")
|
516 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr
|
517 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
518 |
+
if torch.cuda.is_available():
|
519 |
+
torch.cuda.empty_cache()
|
520 |
+
if_f0 = cpt.get("f0", 1)
|
521 |
+
version = cpt.get("version", "v1")
|
522 |
+
if version == "v1":
|
523 |
+
if if_f0 == 1:
|
524 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
525 |
+
*cpt["config"], is_half=config.is_half
|
526 |
+
)
|
527 |
+
else:
|
528 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
529 |
+
elif version == "v2":
|
530 |
+
if if_f0 == 1:
|
531 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
532 |
+
*cpt["config"], is_half=config.is_half
|
533 |
+
)
|
534 |
+
else:
|
535 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
536 |
+
del net_g, cpt
|
537 |
+
if torch.cuda.is_available():
|
538 |
+
torch.cuda.empty_cache()
|
539 |
+
cpt = None
|
540 |
+
return (
|
541 |
+
{"visible": False, "__type__": "update"},
|
542 |
+
{"visible": False, "__type__": "update"},
|
543 |
+
{"visible": False, "__type__": "update"},
|
544 |
+
)
|
545 |
+
person = "%s/%s" % (weight_root, sid)
|
546 |
+
print("loading %s" % person)
|
547 |
+
cpt = torch.load(person, map_location="cpu")
|
548 |
+
tgt_sr = cpt["config"][-1]
|
549 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
550 |
+
if_f0 = cpt.get("f0", 1)
|
551 |
+
if if_f0 == 0:
|
552 |
+
to_return_protect0 = to_return_protect1 = {
|
553 |
+
"visible": False,
|
554 |
+
"value": 0.5,
|
555 |
+
"__type__": "update",
|
556 |
+
}
|
557 |
+
else:
|
558 |
+
to_return_protect0 = {
|
559 |
+
"visible": True,
|
560 |
+
"value": to_return_protect0,
|
561 |
+
"__type__": "update",
|
562 |
+
}
|
563 |
+
to_return_protect1 = {
|
564 |
+
"visible": True,
|
565 |
+
"value": to_return_protect1,
|
566 |
+
"__type__": "update",
|
567 |
+
}
|
568 |
+
version = cpt.get("version", "v1")
|
569 |
+
if version == "v1":
|
570 |
+
if if_f0 == 1:
|
571 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
572 |
+
else:
|
573 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
574 |
+
elif version == "v2":
|
575 |
+
if if_f0 == 1:
|
576 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
577 |
+
else:
|
578 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
579 |
+
del net_g.enc_q
|
580 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
581 |
+
net_g.eval().to(config.device)
|
582 |
+
if config.is_half:
|
583 |
+
net_g = net_g.half()
|
584 |
+
else:
|
585 |
+
net_g = net_g.float()
|
586 |
+
vc = VC(tgt_sr, config)
|
587 |
+
n_spk = cpt["config"][-3]
|
588 |
+
return (
|
589 |
+
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
590 |
+
to_return_protect0,
|
591 |
+
to_return_protect1,
|
592 |
+
)
|
593 |
+
|
594 |
+
def_download = "https://huggingface.co/Kuma6/Satoru-Gojo/resolve/main/Gojo.zip"
|
595 |
+
|
596 |
+
def download_model():
|
597 |
+
gr.Markdown(value="# " + "Download Model")
|
598 |
+
gr.Markdown(value="It is used to download your inference models.")
|
599 |
+
with gr.Row():
|
600 |
+
model_url=gr.Textbox(label="Url:", value=def_download)
|
601 |
+
with gr.Row():
|
602 |
+
download_model_status_bar=gr.Textbox(label="Status:")
|
603 |
+
with gr.Row():
|
604 |
+
download_button=gr.Button("Download")
|
605 |
+
download_button.click(fn=load_downloaded_model, inputs=[model_url], outputs=[download_model_status_bar])
|
606 |
+
|
607 |
+
def download_audio():
|
608 |
+
gr.Markdown(value="# " + "Download Audio")
|
609 |
+
gr.Markdown(value="Download audios of any format for use in inference (Recommended for Mobile Users).")
|
610 |
+
with gr.Row():
|
611 |
+
audio_url=gr.Textbox(label="Url:")
|
612 |
+
with gr.Row():
|
613 |
+
download_audio_status_bar=gr.Textbox(label="Status:")
|
614 |
+
with gr.Row():
|
615 |
+
download_button2=gr.Button("Download")
|
616 |
+
download_button2.click(fn=load_downloaded_audio, inputs=[audio_url], outputs=[download_audio_status_bar])
|
617 |
+
|
618 |
+
def get_edge_voice():
|
619 |
+
completed_process = subprocess.run(['edge-tts',"-l"], capture_output=True, text=True)
|
620 |
+
lines = completed_process.stdout.strip().split("\n")
|
621 |
+
data = []
|
622 |
+
current_entry = {}
|
623 |
+
for line in lines:
|
624 |
+
if line.startswith("Name: "):
|
625 |
+
if current_entry:
|
626 |
+
data.append(current_entry)
|
627 |
+
current_entry = {"Name": line.split(": ")[1]}
|
628 |
+
elif line.startswith("Gender: "):
|
629 |
+
current_entry["Gender"] = line.split(": ")[1]
|
630 |
+
if current_entry:
|
631 |
+
data.append(current_entry)
|
632 |
+
tts_voice = []
|
633 |
+
for entry in data:
|
634 |
+
name = entry["Name"]
|
635 |
+
gender = entry["Gender"]
|
636 |
+
formatted_entry = f'{name}-{gender}'
|
637 |
+
tts_voice.append(formatted_entry)
|
638 |
+
return tts_voice
|
formantshiftcfg/Put your formantshift presets here as a txt file
ADDED
File without changes
|
formantshiftcfg/f2m.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
1.0
|
2 |
+
0.8
|
formantshiftcfg/m2f.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
1.0
|
2 |
+
1.2
|
formantshiftcfg/random.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
32.0
|
2 |
+
9.8
|
infer/lib/audio.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import numpy as np
|
3 |
+
import av
|
4 |
+
from io import BytesIO
|
5 |
+
import ffmpeg
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import random
|
10 |
+
from infer.lib.csvutil import CSVutil
|
11 |
+
#import csv
|
12 |
+
|
13 |
+
platform_stft_mapping = {
|
14 |
+
'linux': 'stftpitchshift',
|
15 |
+
'darwin': 'stftpitchshift',
|
16 |
+
'win32': 'stftpitchshift.exe',
|
17 |
+
}
|
18 |
+
|
19 |
+
stft = platform_stft_mapping.get(sys.platform)
|
20 |
+
|
21 |
+
def wav2(i, o, format):
|
22 |
+
inp = av.open(i, 'rb')
|
23 |
+
if format == "m4a": format = "mp4"
|
24 |
+
out = av.open(o, 'wb', format=format)
|
25 |
+
if format == "ogg": format = "libvorbis"
|
26 |
+
if format == "mp4": format = "aac"
|
27 |
+
|
28 |
+
ostream = out.add_stream(format)
|
29 |
+
|
30 |
+
for frame in inp.decode(audio=0):
|
31 |
+
for p in ostream.encode(frame): out.mux(p)
|
32 |
+
|
33 |
+
for p in ostream.encode(None): out.mux(p)
|
34 |
+
|
35 |
+
out.close()
|
36 |
+
inp.close()
|
37 |
+
|
38 |
+
def audio2(i, o, format, sr):
|
39 |
+
inp = av.open(i, 'rb')
|
40 |
+
out = av.open(o, 'wb', format=format)
|
41 |
+
if format == "ogg": format = "libvorbis"
|
42 |
+
if format == "f32le": format = "pcm_f32le"
|
43 |
+
|
44 |
+
ostream = out.add_stream(format, channels=1)
|
45 |
+
ostream.sample_rate = sr
|
46 |
+
|
47 |
+
for frame in inp.decode(audio=0):
|
48 |
+
for p in ostream.encode(frame): out.mux(p)
|
49 |
+
|
50 |
+
out.close()
|
51 |
+
inp.close()
|
52 |
+
|
53 |
+
def load_audion(file, sr):
|
54 |
+
try:
|
55 |
+
file = (
|
56 |
+
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
57 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
58 |
+
with open(file, "rb") as f:
|
59 |
+
with BytesIO() as out:
|
60 |
+
audio2(f, out, "f32le", sr)
|
61 |
+
return np.frombuffer(out.getvalue(), np.float32).flatten()
|
62 |
+
|
63 |
+
except AttributeError:
|
64 |
+
audio = file[1] / 32768.0
|
65 |
+
if len(audio.shape) == 2:
|
66 |
+
audio = np.mean(audio, -1)
|
67 |
+
return librosa.resample(audio, orig_sr=file[0], target_sr=16000)
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
raise RuntimeError(f"Failed to load audio: {e}")
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def load_audio(file, sr, DoFormant=False, Quefrency=1.0, Timbre=1.0):
|
76 |
+
converted = False
|
77 |
+
DoFormant, Quefrency, Timbre = CSVutil("csvdb/formanting.csv", "r", "formanting")
|
78 |
+
try:
|
79 |
+
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
|
80 |
+
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
81 |
+
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
82 |
+
file = (
|
83 |
+
file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
84 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
85 |
+
file_formanted = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
86 |
+
|
87 |
+
# print(f"dofor={bool(DoFormant)} timbr={Timbre} quef={Quefrency}\n")
|
88 |
+
|
89 |
+
if (
|
90 |
+
lambda DoFormant: True
|
91 |
+
if DoFormant.lower() == "true"
|
92 |
+
else (False if DoFormant.lower() == "false" else DoFormant)
|
93 |
+
)(DoFormant):
|
94 |
+
numerator = round(random.uniform(1, 4), 4)
|
95 |
+
# os.system(f"stftpitchshift -i {file} -q {Quefrency} -t {Timbre} -o {file_formanted}")
|
96 |
+
# print('stftpitchshift -i "%s" -p 1.0 --rms -w 128 -v 8 -q %s -t %s -o "%s"' % (file, Quefrency, Timbre, file_formanted))
|
97 |
+
|
98 |
+
if not file.endswith(".wav"):
|
99 |
+
if not os.path.isfile(f"{file_formanted}.wav"):
|
100 |
+
converted = True
|
101 |
+
# print(f"\nfile = {file}\n")
|
102 |
+
# print(f"\nfile_formanted = {file_formanted}\n")
|
103 |
+
converting = (
|
104 |
+
ffmpeg.input(file_formanted, threads=0)
|
105 |
+
.output(f"{file_formanted}.wav")
|
106 |
+
.run(
|
107 |
+
cmd=["ffmpeg", "-nostdin"],
|
108 |
+
capture_stdout=True,
|
109 |
+
capture_stderr=True,
|
110 |
+
)
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
pass
|
114 |
+
|
115 |
+
file_formanted = (
|
116 |
+
f"{file_formanted}.wav"
|
117 |
+
if not file_formanted.endswith(".wav")
|
118 |
+
else file_formanted
|
119 |
+
)
|
120 |
+
|
121 |
+
print(f" · Formanting {file_formanted}...\n")
|
122 |
+
|
123 |
+
os.system(
|
124 |
+
'%s -i "%s" -q "%s" -t "%s" -o "%sFORMANTED_%s.wav"'
|
125 |
+
% (
|
126 |
+
stft,
|
127 |
+
file_formanted,
|
128 |
+
Quefrency,
|
129 |
+
Timbre,
|
130 |
+
file_formanted,
|
131 |
+
str(numerator),
|
132 |
+
)
|
133 |
+
)
|
134 |
+
|
135 |
+
print(f" · Formanted {file_formanted}!\n")
|
136 |
+
|
137 |
+
# filepraat = (os.path.abspath(os.getcwd()) + '\\' + file).replace('/','\\')
|
138 |
+
# file_formantedpraat = ('"' + os.path.abspath(os.getcwd()) + '/' + 'formanted'.join(file_formanted) + '"').replace('/','\\')
|
139 |
+
# print("%sFORMANTED_%s.wav" % (file_formanted, str(numerator)))
|
140 |
+
|
141 |
+
out, _ = (
|
142 |
+
ffmpeg.input(
|
143 |
+
"%sFORMANTED_%s.wav" % (file_formanted, str(numerator)), threads=0
|
144 |
+
)
|
145 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
146 |
+
.run(
|
147 |
+
cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True
|
148 |
+
)
|
149 |
+
)
|
150 |
+
|
151 |
+
try:
|
152 |
+
os.remove("%sFORMANTED_%s.wav" % (file_formanted, str(numerator)))
|
153 |
+
except Exception:
|
154 |
+
pass
|
155 |
+
print("couldn't remove formanted type of file")
|
156 |
+
|
157 |
+
else:
|
158 |
+
out, _ = (
|
159 |
+
ffmpeg.input(file, threads=0)
|
160 |
+
.output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
|
161 |
+
.run(
|
162 |
+
cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True
|
163 |
+
)
|
164 |
+
)
|
165 |
+
except Exception as e:
|
166 |
+
raise RuntimeError(f"Failed to load audio: {e}")
|
167 |
+
|
168 |
+
if converted:
|
169 |
+
try:
|
170 |
+
os.remove(file_formanted)
|
171 |
+
except Exception:
|
172 |
+
pass
|
173 |
+
print("couldn't remove converted type of file")
|
174 |
+
converted = False
|
175 |
+
|
176 |
+
return np.frombuffer(out, np.float32).flatten()
|
177 |
+
|
178 |
+
|
179 |
+
def check_audio_duration(file):
|
180 |
+
try:
|
181 |
+
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
182 |
+
|
183 |
+
probe = ffmpeg.probe(file)
|
184 |
+
|
185 |
+
duration = float(probe['streams'][0]['duration'])
|
186 |
+
|
187 |
+
if duration < 0.76:
|
188 |
+
print(
|
189 |
+
f"\n------------\n"
|
190 |
+
f"Audio file, {file.split('/')[-1]}, under ~0.76s detected - file is too short. Target at least 1-2s for best results."
|
191 |
+
f"\n------------\n\n"
|
192 |
+
)
|
193 |
+
return False
|
194 |
+
|
195 |
+
return True
|
196 |
+
except Exception as e:
|
197 |
+
raise RuntimeError(f"Failed to check audio duration: {e}")
|
infer/lib/csvutil.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
# import praatio
|
5 |
+
# import praatio.praat_scripts
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
|
9 |
+
import random
|
10 |
+
|
11 |
+
import csv
|
12 |
+
|
13 |
+
# praatEXE = join('.',os.path.abspath(os.getcwd()) + r"\Praat.exe")
|
14 |
+
|
15 |
+
|
16 |
+
def CSVutil(file, rw, type, *args):
|
17 |
+
if type == "formanting":
|
18 |
+
if rw == "r":
|
19 |
+
with open(file) as fileCSVread:
|
20 |
+
csv_reader = list(csv.reader(fileCSVread))
|
21 |
+
return (
|
22 |
+
(csv_reader[0][0], csv_reader[0][1], csv_reader[0][2])
|
23 |
+
if csv_reader is not None
|
24 |
+
else (lambda: exec('raise ValueError("No data")'))()
|
25 |
+
)
|
26 |
+
else:
|
27 |
+
if args:
|
28 |
+
doformnt = args[0]
|
29 |
+
else:
|
30 |
+
doformnt = False
|
31 |
+
qfr = args[1] if len(args) > 1 else 1.0
|
32 |
+
tmb = args[2] if len(args) > 2 else 1.0
|
33 |
+
with open(file, rw, newline="") as fileCSVwrite:
|
34 |
+
csv_writer = csv.writer(fileCSVwrite, delimiter=",")
|
35 |
+
csv_writer.writerow([doformnt, qfr, tmb])
|
36 |
+
elif type == "stop":
|
37 |
+
stop = args[0] if args else False
|
38 |
+
with open(file, rw, newline="") as fileCSVwrite:
|
39 |
+
csv_writer = csv.writer(fileCSVwrite, delimiter=",")
|
40 |
+
csv_writer.writerow([stop])
|
41 |
+
|
infer/lib/infer_pack/attentions.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from infer.lib.infer_pack import commons, modules
|
10 |
+
from infer.lib.infer_pack.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
hidden_channels,
|
17 |
+
filter_channels,
|
18 |
+
n_heads,
|
19 |
+
n_layers,
|
20 |
+
kernel_size=1,
|
21 |
+
p_dropout=0.0,
|
22 |
+
window_size=10,
|
23 |
+
**kwargs
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.hidden_channels = hidden_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.n_heads = n_heads
|
29 |
+
self.n_layers = n_layers
|
30 |
+
self.kernel_size = kernel_size
|
31 |
+
self.p_dropout = p_dropout
|
32 |
+
self.window_size = window_size
|
33 |
+
|
34 |
+
self.drop = nn.Dropout(p_dropout)
|
35 |
+
self.attn_layers = nn.ModuleList()
|
36 |
+
self.norm_layers_1 = nn.ModuleList()
|
37 |
+
self.ffn_layers = nn.ModuleList()
|
38 |
+
self.norm_layers_2 = nn.ModuleList()
|
39 |
+
for i in range(self.n_layers):
|
40 |
+
self.attn_layers.append(
|
41 |
+
MultiHeadAttention(
|
42 |
+
hidden_channels,
|
43 |
+
hidden_channels,
|
44 |
+
n_heads,
|
45 |
+
p_dropout=p_dropout,
|
46 |
+
window_size=window_size,
|
47 |
+
)
|
48 |
+
)
|
49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
50 |
+
self.ffn_layers.append(
|
51 |
+
FFN(
|
52 |
+
hidden_channels,
|
53 |
+
hidden_channels,
|
54 |
+
filter_channels,
|
55 |
+
kernel_size,
|
56 |
+
p_dropout=p_dropout,
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
60 |
+
|
61 |
+
def forward(self, x, x_mask):
|
62 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
63 |
+
x = x * x_mask
|
64 |
+
for i in range(self.n_layers):
|
65 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
66 |
+
y = self.drop(y)
|
67 |
+
x = self.norm_layers_1[i](x + y)
|
68 |
+
|
69 |
+
y = self.ffn_layers[i](x, x_mask)
|
70 |
+
y = self.drop(y)
|
71 |
+
x = self.norm_layers_2[i](x + y)
|
72 |
+
x = x * x_mask
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class Decoder(nn.Module):
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
hidden_channels,
|
80 |
+
filter_channels,
|
81 |
+
n_heads,
|
82 |
+
n_layers,
|
83 |
+
kernel_size=1,
|
84 |
+
p_dropout=0.0,
|
85 |
+
proximal_bias=False,
|
86 |
+
proximal_init=True,
|
87 |
+
**kwargs
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
self.hidden_channels = hidden_channels
|
91 |
+
self.filter_channels = filter_channels
|
92 |
+
self.n_heads = n_heads
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.kernel_size = kernel_size
|
95 |
+
self.p_dropout = p_dropout
|
96 |
+
self.proximal_bias = proximal_bias
|
97 |
+
self.proximal_init = proximal_init
|
98 |
+
|
99 |
+
self.drop = nn.Dropout(p_dropout)
|
100 |
+
self.self_attn_layers = nn.ModuleList()
|
101 |
+
self.norm_layers_0 = nn.ModuleList()
|
102 |
+
self.encdec_attn_layers = nn.ModuleList()
|
103 |
+
self.norm_layers_1 = nn.ModuleList()
|
104 |
+
self.ffn_layers = nn.ModuleList()
|
105 |
+
self.norm_layers_2 = nn.ModuleList()
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
self.self_attn_layers.append(
|
108 |
+
MultiHeadAttention(
|
109 |
+
hidden_channels,
|
110 |
+
hidden_channels,
|
111 |
+
n_heads,
|
112 |
+
p_dropout=p_dropout,
|
113 |
+
proximal_bias=proximal_bias,
|
114 |
+
proximal_init=proximal_init,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
+
self.encdec_attn_layers.append(
|
119 |
+
MultiHeadAttention(
|
120 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
121 |
+
)
|
122 |
+
)
|
123 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
124 |
+
self.ffn_layers.append(
|
125 |
+
FFN(
|
126 |
+
hidden_channels,
|
127 |
+
hidden_channels,
|
128 |
+
filter_channels,
|
129 |
+
kernel_size,
|
130 |
+
p_dropout=p_dropout,
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
)
|
134 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
135 |
+
|
136 |
+
def forward(self, x, x_mask, h, h_mask):
|
137 |
+
"""
|
138 |
+
x: decoder input
|
139 |
+
h: encoder output
|
140 |
+
"""
|
141 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
142 |
+
device=x.device, dtype=x.dtype
|
143 |
+
)
|
144 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
145 |
+
x = x * x_mask
|
146 |
+
for i in range(self.n_layers):
|
147 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
148 |
+
y = self.drop(y)
|
149 |
+
x = self.norm_layers_0[i](x + y)
|
150 |
+
|
151 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
152 |
+
y = self.drop(y)
|
153 |
+
x = self.norm_layers_1[i](x + y)
|
154 |
+
|
155 |
+
y = self.ffn_layers[i](x, x_mask)
|
156 |
+
y = self.drop(y)
|
157 |
+
x = self.norm_layers_2[i](x + y)
|
158 |
+
x = x * x_mask
|
159 |
+
return x
|
160 |
+
|
161 |
+
|
162 |
+
class MultiHeadAttention(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
channels,
|
166 |
+
out_channels,
|
167 |
+
n_heads,
|
168 |
+
p_dropout=0.0,
|
169 |
+
window_size=None,
|
170 |
+
heads_share=True,
|
171 |
+
block_length=None,
|
172 |
+
proximal_bias=False,
|
173 |
+
proximal_init=False,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
assert channels % n_heads == 0
|
177 |
+
|
178 |
+
self.channels = channels
|
179 |
+
self.out_channels = out_channels
|
180 |
+
self.n_heads = n_heads
|
181 |
+
self.p_dropout = p_dropout
|
182 |
+
self.window_size = window_size
|
183 |
+
self.heads_share = heads_share
|
184 |
+
self.block_length = block_length
|
185 |
+
self.proximal_bias = proximal_bias
|
186 |
+
self.proximal_init = proximal_init
|
187 |
+
self.attn = None
|
188 |
+
|
189 |
+
self.k_channels = channels // n_heads
|
190 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
191 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
192 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
193 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
194 |
+
self.drop = nn.Dropout(p_dropout)
|
195 |
+
|
196 |
+
if window_size is not None:
|
197 |
+
n_heads_rel = 1 if heads_share else n_heads
|
198 |
+
rel_stddev = self.k_channels**-0.5
|
199 |
+
self.emb_rel_k = nn.Parameter(
|
200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
201 |
+
* rel_stddev
|
202 |
+
)
|
203 |
+
self.emb_rel_v = nn.Parameter(
|
204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
+
* rel_stddev
|
206 |
+
)
|
207 |
+
|
208 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
209 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
210 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
211 |
+
if proximal_init:
|
212 |
+
with torch.no_grad():
|
213 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
214 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
215 |
+
|
216 |
+
def forward(self, x, c, attn_mask=None):
|
217 |
+
q = self.conv_q(x)
|
218 |
+
k = self.conv_k(c)
|
219 |
+
v = self.conv_v(c)
|
220 |
+
|
221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
+
|
223 |
+
x = self.conv_o(x)
|
224 |
+
return x
|
225 |
+
|
226 |
+
def attention(self, query, key, value, mask=None):
|
227 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
228 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
229 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
230 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
231 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
232 |
+
|
233 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
234 |
+
if self.window_size is not None:
|
235 |
+
assert (
|
236 |
+
t_s == t_t
|
237 |
+
), "Relative attention is only available for self-attention."
|
238 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
239 |
+
rel_logits = self._matmul_with_relative_keys(
|
240 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
241 |
+
)
|
242 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
243 |
+
scores = scores + scores_local
|
244 |
+
if self.proximal_bias:
|
245 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
246 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
247 |
+
device=scores.device, dtype=scores.dtype
|
248 |
+
)
|
249 |
+
if mask is not None:
|
250 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
251 |
+
if self.block_length is not None:
|
252 |
+
assert (
|
253 |
+
t_s == t_t
|
254 |
+
), "Local attention is only available for self-attention."
|
255 |
+
block_mask = (
|
256 |
+
torch.ones_like(scores)
|
257 |
+
.triu(-self.block_length)
|
258 |
+
.tril(self.block_length)
|
259 |
+
)
|
260 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
261 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
262 |
+
p_attn = self.drop(p_attn)
|
263 |
+
output = torch.matmul(p_attn, value)
|
264 |
+
if self.window_size is not None:
|
265 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
266 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
267 |
+
self.emb_rel_v, t_s
|
268 |
+
)
|
269 |
+
output = output + self._matmul_with_relative_values(
|
270 |
+
relative_weights, value_relative_embeddings
|
271 |
+
)
|
272 |
+
output = (
|
273 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
274 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
275 |
+
return output, p_attn
|
276 |
+
|
277 |
+
def _matmul_with_relative_values(self, x, y):
|
278 |
+
"""
|
279 |
+
x: [b, h, l, m]
|
280 |
+
y: [h or 1, m, d]
|
281 |
+
ret: [b, h, l, d]
|
282 |
+
"""
|
283 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
284 |
+
return ret
|
285 |
+
|
286 |
+
def _matmul_with_relative_keys(self, x, y):
|
287 |
+
"""
|
288 |
+
x: [b, h, l, d]
|
289 |
+
y: [h or 1, m, d]
|
290 |
+
ret: [b, h, l, m]
|
291 |
+
"""
|
292 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
293 |
+
return ret
|
294 |
+
|
295 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
296 |
+
max_relative_position = 2 * self.window_size + 1
|
297 |
+
# Pad first before slice to avoid using cond ops.
|
298 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
299 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
300 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
301 |
+
if pad_length > 0:
|
302 |
+
padded_relative_embeddings = F.pad(
|
303 |
+
relative_embeddings,
|
304 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
padded_relative_embeddings = relative_embeddings
|
308 |
+
used_relative_embeddings = padded_relative_embeddings[
|
309 |
+
:, slice_start_position:slice_end_position
|
310 |
+
]
|
311 |
+
return used_relative_embeddings
|
312 |
+
|
313 |
+
def _relative_position_to_absolute_position(self, x):
|
314 |
+
"""
|
315 |
+
x: [b, h, l, 2*l-1]
|
316 |
+
ret: [b, h, l, l]
|
317 |
+
"""
|
318 |
+
batch, heads, length, _ = x.size()
|
319 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
320 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
321 |
+
|
322 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
323 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
324 |
+
x_flat = F.pad(
|
325 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
326 |
+
)
|
327 |
+
|
328 |
+
# Reshape and slice out the padded elements.
|
329 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
330 |
+
:, :, :length, length - 1 :
|
331 |
+
]
|
332 |
+
return x_final
|
333 |
+
|
334 |
+
def _absolute_position_to_relative_position(self, x):
|
335 |
+
"""
|
336 |
+
x: [b, h, l, l]
|
337 |
+
ret: [b, h, l, 2*l-1]
|
338 |
+
"""
|
339 |
+
batch, heads, length, _ = x.size()
|
340 |
+
# padd along column
|
341 |
+
x = F.pad(
|
342 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
343 |
+
)
|
344 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
345 |
+
# add 0's in the beginning that will skew the elements after reshape
|
346 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
347 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
348 |
+
return x_final
|
349 |
+
|
350 |
+
def _attention_bias_proximal(self, length):
|
351 |
+
"""Bias for self-attention to encourage attention to close positions.
|
352 |
+
Args:
|
353 |
+
length: an integer scalar.
|
354 |
+
Returns:
|
355 |
+
a Tensor with shape [1, 1, length, length]
|
356 |
+
"""
|
357 |
+
r = torch.arange(length, dtype=torch.float32)
|
358 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
359 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
360 |
+
|
361 |
+
|
362 |
+
class FFN(nn.Module):
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
in_channels,
|
366 |
+
out_channels,
|
367 |
+
filter_channels,
|
368 |
+
kernel_size,
|
369 |
+
p_dropout=0.0,
|
370 |
+
activation=None,
|
371 |
+
causal=False,
|
372 |
+
):
|
373 |
+
super().__init__()
|
374 |
+
self.in_channels = in_channels
|
375 |
+
self.out_channels = out_channels
|
376 |
+
self.filter_channels = filter_channels
|
377 |
+
self.kernel_size = kernel_size
|
378 |
+
self.p_dropout = p_dropout
|
379 |
+
self.activation = activation
|
380 |
+
self.causal = causal
|
381 |
+
|
382 |
+
if causal:
|
383 |
+
self.padding = self._causal_padding
|
384 |
+
else:
|
385 |
+
self.padding = self._same_padding
|
386 |
+
|
387 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
388 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
389 |
+
self.drop = nn.Dropout(p_dropout)
|
390 |
+
|
391 |
+
def forward(self, x, x_mask):
|
392 |
+
x = self.conv_1(self.padding(x * x_mask))
|
393 |
+
if self.activation == "gelu":
|
394 |
+
x = x * torch.sigmoid(1.702 * x)
|
395 |
+
else:
|
396 |
+
x = torch.relu(x)
|
397 |
+
x = self.drop(x)
|
398 |
+
x = self.conv_2(self.padding(x * x_mask))
|
399 |
+
return x * x_mask
|
400 |
+
|
401 |
+
def _causal_padding(self, x):
|
402 |
+
if self.kernel_size == 1:
|
403 |
+
return x
|
404 |
+
pad_l = self.kernel_size - 1
|
405 |
+
pad_r = 0
|
406 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
407 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
408 |
+
return x
|
409 |
+
|
410 |
+
def _same_padding(self, x):
|
411 |
+
if self.kernel_size == 1:
|
412 |
+
return x
|
413 |
+
pad_l = (self.kernel_size - 1) // 2
|
414 |
+
pad_r = self.kernel_size // 2
|
415 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
416 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
417 |
+
return x
|
infer/lib/infer_pack/commons.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def init_weights(m, mean=0.0, std=0.01):
|
10 |
+
classname = m.__class__.__name__
|
11 |
+
if classname.find("Conv") != -1:
|
12 |
+
m.weight.data.normal_(mean, std)
|
13 |
+
|
14 |
+
|
15 |
+
def get_padding(kernel_size, dilation=1):
|
16 |
+
return int((kernel_size * dilation - dilation) / 2)
|
17 |
+
|
18 |
+
|
19 |
+
def convert_pad_shape(pad_shape):
|
20 |
+
l = pad_shape[::-1]
|
21 |
+
pad_shape = [item for sublist in l for item in sublist]
|
22 |
+
return pad_shape
|
23 |
+
|
24 |
+
|
25 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
26 |
+
"""KL(P||Q)"""
|
27 |
+
kl = (logs_q - logs_p) - 0.5
|
28 |
+
kl += (
|
29 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
30 |
+
)
|
31 |
+
return kl
|
32 |
+
|
33 |
+
|
34 |
+
def rand_gumbel(shape):
|
35 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
36 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
37 |
+
return -torch.log(-torch.log(uniform_samples))
|
38 |
+
|
39 |
+
|
40 |
+
def rand_gumbel_like(x):
|
41 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
42 |
+
return g
|
43 |
+
|
44 |
+
|
45 |
+
def slice_segments(x, ids_str, segment_size=4):
|
46 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
47 |
+
for i in range(x.size(0)):
|
48 |
+
idx_str = ids_str[i]
|
49 |
+
idx_end = idx_str + segment_size
|
50 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
51 |
+
return ret
|
52 |
+
|
53 |
+
|
54 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
55 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
56 |
+
for i in range(x.size(0)):
|
57 |
+
idx_str = ids_str[i]
|
58 |
+
idx_end = idx_str + segment_size
|
59 |
+
ret[i] = x[i, idx_str:idx_end]
|
60 |
+
return ret
|
61 |
+
|
62 |
+
|
63 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
64 |
+
b, d, t = x.size()
|
65 |
+
if x_lengths is None:
|
66 |
+
x_lengths = t
|
67 |
+
ids_str_max = x_lengths - segment_size + 1
|
68 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
69 |
+
ret = slice_segments(x, ids_str, segment_size)
|
70 |
+
return ret, ids_str
|
71 |
+
|
72 |
+
|
73 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
74 |
+
position = torch.arange(length, dtype=torch.float)
|
75 |
+
num_timescales = channels // 2
|
76 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
77 |
+
num_timescales - 1
|
78 |
+
)
|
79 |
+
inv_timescales = min_timescale * torch.exp(
|
80 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
81 |
+
)
|
82 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
83 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
84 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
85 |
+
signal = signal.view(1, channels, length)
|
86 |
+
return signal
|
87 |
+
|
88 |
+
|
89 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
90 |
+
b, channels, length = x.size()
|
91 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
92 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
93 |
+
|
94 |
+
|
95 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
96 |
+
b, channels, length = x.size()
|
97 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
98 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
99 |
+
|
100 |
+
|
101 |
+
def subsequent_mask(length):
|
102 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
103 |
+
return mask
|
104 |
+
|
105 |
+
|
106 |
+
@torch.jit.script
|
107 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
108 |
+
n_channels_int = n_channels[0]
|
109 |
+
in_act = input_a + input_b
|
110 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
111 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
112 |
+
acts = t_act * s_act
|
113 |
+
return acts
|
114 |
+
|
115 |
+
|
116 |
+
def convert_pad_shape(pad_shape):
|
117 |
+
l = pad_shape[::-1]
|
118 |
+
pad_shape = [item for sublist in l for item in sublist]
|
119 |
+
return pad_shape
|
120 |
+
|
121 |
+
|
122 |
+
def shift_1d(x):
|
123 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
124 |
+
return x
|
125 |
+
|
126 |
+
|
127 |
+
def sequence_mask(length, max_length=None):
|
128 |
+
if max_length is None:
|
129 |
+
max_length = length.max()
|
130 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
131 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
132 |
+
|
133 |
+
|
134 |
+
def generate_path(duration, mask):
|
135 |
+
"""
|
136 |
+
duration: [b, 1, t_x]
|
137 |
+
mask: [b, 1, t_y, t_x]
|
138 |
+
"""
|
139 |
+
device = duration.device
|
140 |
+
|
141 |
+
b, _, t_y, t_x = mask.shape
|
142 |
+
cum_duration = torch.cumsum(duration, -1)
|
143 |
+
|
144 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
145 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
146 |
+
path = path.view(b, t_x, t_y)
|
147 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
148 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
149 |
+
return path
|
150 |
+
|
151 |
+
|
152 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
153 |
+
if isinstance(parameters, torch.Tensor):
|
154 |
+
parameters = [parameters]
|
155 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
156 |
+
norm_type = float(norm_type)
|
157 |
+
if clip_value is not None:
|
158 |
+
clip_value = float(clip_value)
|
159 |
+
|
160 |
+
total_norm = 0
|
161 |
+
for p in parameters:
|
162 |
+
param_norm = p.grad.data.norm(norm_type)
|
163 |
+
total_norm += param_norm.item() ** norm_type
|
164 |
+
if clip_value is not None:
|
165 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
166 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
167 |
+
return total_norm
|
infer/lib/infer_pack/models.py
ADDED
@@ -0,0 +1,1174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
12 |
+
|
13 |
+
from infer.lib.infer_pack import attentions, commons, modules
|
14 |
+
from infer.lib.infer_pack.commons import get_padding, init_weights
|
15 |
+
has_xpu = bool(hasattr(torch, "xpu") and torch.xpu.is_available())
|
16 |
+
|
17 |
+
class TextEncoder256(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
out_channels,
|
21 |
+
hidden_channels,
|
22 |
+
filter_channels,
|
23 |
+
n_heads,
|
24 |
+
n_layers,
|
25 |
+
kernel_size,
|
26 |
+
p_dropout,
|
27 |
+
f0=True,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.out_channels = out_channels
|
31 |
+
self.hidden_channels = hidden_channels
|
32 |
+
self.filter_channels = filter_channels
|
33 |
+
self.n_heads = n_heads
|
34 |
+
self.n_layers = n_layers
|
35 |
+
self.kernel_size = kernel_size
|
36 |
+
self.p_dropout = p_dropout
|
37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
+
if f0 == True:
|
40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
+
self.encoder = attentions.Encoder(
|
42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
+
)
|
44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
+
|
46 |
+
def forward(self, phone, pitch, lengths):
|
47 |
+
if pitch == None:
|
48 |
+
x = self.emb_phone(phone)
|
49 |
+
else:
|
50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
+
x = self.lrelu(x)
|
53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
+
x.dtype
|
56 |
+
)
|
57 |
+
x = self.encoder(x * x_mask, x_mask)
|
58 |
+
stats = self.proj(x) * x_mask
|
59 |
+
|
60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
+
return m, logs, x_mask
|
62 |
+
|
63 |
+
|
64 |
+
class TextEncoder768(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
out_channels,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size,
|
73 |
+
p_dropout,
|
74 |
+
f0=True,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
self.out_channels = out_channels
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
+
if f0 == True:
|
87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
+
self.encoder = attentions.Encoder(
|
89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
+
)
|
91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
+
|
93 |
+
def forward(self, phone, pitch, lengths):
|
94 |
+
if pitch == None:
|
95 |
+
x = self.emb_phone(phone)
|
96 |
+
else:
|
97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
+
x = self.lrelu(x)
|
100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
+
x.dtype
|
103 |
+
)
|
104 |
+
x = self.encoder(x * x_mask, x_mask)
|
105 |
+
stats = self.proj(x) * x_mask
|
106 |
+
|
107 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
+
return m, logs, x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class ResidualCouplingBlock(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
channels,
|
115 |
+
hidden_channels,
|
116 |
+
kernel_size,
|
117 |
+
dilation_rate,
|
118 |
+
n_layers,
|
119 |
+
n_flows=4,
|
120 |
+
gin_channels=0,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.channels = channels
|
124 |
+
self.hidden_channels = hidden_channels
|
125 |
+
self.kernel_size = kernel_size
|
126 |
+
self.dilation_rate = dilation_rate
|
127 |
+
self.n_layers = n_layers
|
128 |
+
self.n_flows = n_flows
|
129 |
+
self.gin_channels = gin_channels
|
130 |
+
|
131 |
+
self.flows = nn.ModuleList()
|
132 |
+
for i in range(n_flows):
|
133 |
+
self.flows.append(
|
134 |
+
modules.ResidualCouplingLayer(
|
135 |
+
channels,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=gin_channels,
|
141 |
+
mean_only=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
self.flows.append(modules.Flip())
|
145 |
+
|
146 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
+
if not reverse:
|
148 |
+
for flow in self.flows:
|
149 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
+
else:
|
151 |
+
for flow in reversed(self.flows):
|
152 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
+
return x
|
154 |
+
|
155 |
+
def remove_weight_norm(self):
|
156 |
+
for i in range(self.n_flows):
|
157 |
+
self.flows[i * 2].remove_weight_norm()
|
158 |
+
|
159 |
+
|
160 |
+
class PosteriorEncoder(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
in_channels,
|
164 |
+
out_channels,
|
165 |
+
hidden_channels,
|
166 |
+
kernel_size,
|
167 |
+
dilation_rate,
|
168 |
+
n_layers,
|
169 |
+
gin_channels=0,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
self.in_channels = in_channels
|
173 |
+
self.out_channels = out_channels
|
174 |
+
self.hidden_channels = hidden_channels
|
175 |
+
self.kernel_size = kernel_size
|
176 |
+
self.dilation_rate = dilation_rate
|
177 |
+
self.n_layers = n_layers
|
178 |
+
self.gin_channels = gin_channels
|
179 |
+
|
180 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
+
self.enc = modules.WN(
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
gin_channels=gin_channels,
|
187 |
+
)
|
188 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
+
|
190 |
+
def forward(self, x, x_lengths, g=None):
|
191 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
+
x.dtype
|
193 |
+
)
|
194 |
+
x = self.pre(x) * x_mask
|
195 |
+
x = self.enc(x, x_mask, g=g)
|
196 |
+
stats = self.proj(x) * x_mask
|
197 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
+
return z, m, logs, x_mask
|
200 |
+
|
201 |
+
def remove_weight_norm(self):
|
202 |
+
self.enc.remove_weight_norm()
|
203 |
+
|
204 |
+
|
205 |
+
class Generator(torch.nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
initial_channel,
|
209 |
+
resblock,
|
210 |
+
resblock_kernel_sizes,
|
211 |
+
resblock_dilation_sizes,
|
212 |
+
upsample_rates,
|
213 |
+
upsample_initial_channel,
|
214 |
+
upsample_kernel_sizes,
|
215 |
+
gin_channels=0,
|
216 |
+
):
|
217 |
+
super(Generator, self).__init__()
|
218 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
+
self.num_upsamples = len(upsample_rates)
|
220 |
+
self.conv_pre = Conv1d(
|
221 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
+
)
|
223 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
+
|
225 |
+
self.ups = nn.ModuleList()
|
226 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
+
self.ups.append(
|
228 |
+
weight_norm(
|
229 |
+
ConvTranspose1d(
|
230 |
+
upsample_initial_channel // (2**i),
|
231 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
+
k,
|
233 |
+
u,
|
234 |
+
padding=(k - u) // 2,
|
235 |
+
)
|
236 |
+
)
|
237 |
+
)
|
238 |
+
|
239 |
+
self.resblocks = nn.ModuleList()
|
240 |
+
for i in range(len(self.ups)):
|
241 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
+
for j, (k, d) in enumerate(
|
243 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
+
):
|
245 |
+
self.resblocks.append(resblock(ch, k, d))
|
246 |
+
|
247 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
+
self.ups.apply(init_weights)
|
249 |
+
|
250 |
+
if gin_channels != 0:
|
251 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
+
|
253 |
+
def forward(self, x, g=None):
|
254 |
+
x = self.conv_pre(x)
|
255 |
+
if g is not None:
|
256 |
+
x = x + self.cond(g)
|
257 |
+
|
258 |
+
for i in range(self.num_upsamples):
|
259 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
+
x = self.ups[i](x)
|
261 |
+
xs = None
|
262 |
+
for j in range(self.num_kernels):
|
263 |
+
if xs is None:
|
264 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
+
else:
|
266 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
+
x = xs / self.num_kernels
|
268 |
+
x = F.leaky_relu(x)
|
269 |
+
x = self.conv_post(x)
|
270 |
+
x = torch.tanh(x)
|
271 |
+
|
272 |
+
return x
|
273 |
+
|
274 |
+
def remove_weight_norm(self):
|
275 |
+
for l in self.ups:
|
276 |
+
remove_weight_norm(l)
|
277 |
+
for l in self.resblocks:
|
278 |
+
l.remove_weight_norm()
|
279 |
+
|
280 |
+
|
281 |
+
class SineGen(torch.nn.Module):
|
282 |
+
"""Definition of sine generator
|
283 |
+
SineGen(samp_rate, harmonic_num = 0,
|
284 |
+
sine_amp = 0.1, noise_std = 0.003,
|
285 |
+
voiced_threshold = 0,
|
286 |
+
flag_for_pulse=False)
|
287 |
+
samp_rate: sampling rate in Hz
|
288 |
+
harmonic_num: number of harmonic overtones (default 0)
|
289 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
+
noise_std: std of Gaussian noise (default 0.003)
|
291 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
+
segment is always sin(np.pi) or cos(0)
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
samp_rate,
|
300 |
+
harmonic_num=0,
|
301 |
+
sine_amp=0.1,
|
302 |
+
noise_std=0.003,
|
303 |
+
voiced_threshold=0,
|
304 |
+
flag_for_pulse=False,
|
305 |
+
):
|
306 |
+
super(SineGen, self).__init__()
|
307 |
+
self.sine_amp = sine_amp
|
308 |
+
self.noise_std = noise_std
|
309 |
+
self.harmonic_num = harmonic_num
|
310 |
+
self.dim = self.harmonic_num + 1
|
311 |
+
self.sampling_rate = samp_rate
|
312 |
+
self.voiced_threshold = voiced_threshold
|
313 |
+
|
314 |
+
def _f02uv(self, f0):
|
315 |
+
# generate uv signal
|
316 |
+
uv = torch.ones_like(f0)
|
317 |
+
uv = uv * (f0 > self.voiced_threshold)
|
318 |
+
if uv.device.type == "privateuseone": # for DirectML
|
319 |
+
uv = uv.float()
|
320 |
+
return uv
|
321 |
+
|
322 |
+
def forward(self, f0, upp):
|
323 |
+
"""sine_tensor, uv = forward(f0)
|
324 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
325 |
+
f0 for unvoiced steps should be 0
|
326 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
327 |
+
output uv: tensor(batchsize=1, length, 1)
|
328 |
+
"""
|
329 |
+
with torch.no_grad():
|
330 |
+
f0 = f0[:, None].transpose(1, 2)
|
331 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
332 |
+
# fundamental component
|
333 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
334 |
+
for idx in np.arange(self.harmonic_num):
|
335 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
336 |
+
idx + 2
|
337 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
338 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
339 |
+
rand_ini = torch.rand(
|
340 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
341 |
+
)
|
342 |
+
rand_ini[:, 0] = 0
|
343 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
344 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
345 |
+
tmp_over_one *= upp
|
346 |
+
tmp_over_one = F.interpolate(
|
347 |
+
tmp_over_one.transpose(2, 1),
|
348 |
+
scale_factor=upp,
|
349 |
+
mode="linear",
|
350 |
+
align_corners=True,
|
351 |
+
).transpose(2, 1)
|
352 |
+
rad_values = F.interpolate(
|
353 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
354 |
+
).transpose(
|
355 |
+
2, 1
|
356 |
+
) #######
|
357 |
+
tmp_over_one %= 1
|
358 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
359 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
360 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
361 |
+
sine_waves = torch.sin(
|
362 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
363 |
+
)
|
364 |
+
sine_waves = sine_waves * self.sine_amp
|
365 |
+
uv = self._f02uv(f0)
|
366 |
+
uv = F.interpolate(
|
367 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
368 |
+
).transpose(2, 1)
|
369 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
370 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
371 |
+
sine_waves = sine_waves * uv + noise
|
372 |
+
return sine_waves, uv, noise
|
373 |
+
|
374 |
+
|
375 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
376 |
+
"""SourceModule for hn-nsf
|
377 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
378 |
+
add_noise_std=0.003, voiced_threshod=0)
|
379 |
+
sampling_rate: sampling_rate in Hz
|
380 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
381 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
382 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
383 |
+
note that amplitude of noise in unvoiced is decided
|
384 |
+
by sine_amp
|
385 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
386 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
387 |
+
F0_sampled (batchsize, length, 1)
|
388 |
+
Sine_source (batchsize, length, 1)
|
389 |
+
noise_source (batchsize, length 1)
|
390 |
+
uv (batchsize, length, 1)
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
sampling_rate,
|
396 |
+
harmonic_num=0,
|
397 |
+
sine_amp=0.1,
|
398 |
+
add_noise_std=0.003,
|
399 |
+
voiced_threshod=0,
|
400 |
+
is_half=True,
|
401 |
+
):
|
402 |
+
super(SourceModuleHnNSF, self).__init__()
|
403 |
+
|
404 |
+
self.sine_amp = sine_amp
|
405 |
+
self.noise_std = add_noise_std
|
406 |
+
self.is_half = is_half
|
407 |
+
# to produce sine waveforms
|
408 |
+
self.l_sin_gen = SineGen(
|
409 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
410 |
+
)
|
411 |
+
|
412 |
+
# to merge source harmonics into a single excitation
|
413 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
414 |
+
self.l_tanh = torch.nn.Tanh()
|
415 |
+
|
416 |
+
def forward(self, x, upp=None):
|
417 |
+
if hasattr(self, "ddtype") == False:
|
418 |
+
self.ddtype = self.l_linear.weight.dtype
|
419 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
420 |
+
# print(x.dtype,sine_wavs.dtype,self.l_linear.weight.dtype)
|
421 |
+
# if self.is_half:
|
422 |
+
# sine_wavs = sine_wavs.half()
|
423 |
+
# sine_merge = self.l_tanh(self.l_linear(sine_wavs.to(x)))
|
424 |
+
# print(sine_wavs.dtype,self.ddtype)
|
425 |
+
if sine_wavs.dtype != self.ddtype:
|
426 |
+
sine_wavs = sine_wavs.to(self.ddtype)
|
427 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
428 |
+
return sine_merge, None, None # noise, uv
|
429 |
+
|
430 |
+
|
431 |
+
class GeneratorNSF(torch.nn.Module):
|
432 |
+
def __init__(
|
433 |
+
self,
|
434 |
+
initial_channel,
|
435 |
+
resblock,
|
436 |
+
resblock_kernel_sizes,
|
437 |
+
resblock_dilation_sizes,
|
438 |
+
upsample_rates,
|
439 |
+
upsample_initial_channel,
|
440 |
+
upsample_kernel_sizes,
|
441 |
+
gin_channels,
|
442 |
+
sr,
|
443 |
+
is_half=False,
|
444 |
+
):
|
445 |
+
super(GeneratorNSF, self).__init__()
|
446 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
447 |
+
self.num_upsamples = len(upsample_rates)
|
448 |
+
|
449 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
450 |
+
self.m_source = SourceModuleHnNSF(
|
451 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
452 |
+
)
|
453 |
+
self.noise_convs = nn.ModuleList()
|
454 |
+
self.conv_pre = Conv1d(
|
455 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
456 |
+
)
|
457 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
458 |
+
|
459 |
+
self.ups = nn.ModuleList()
|
460 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
461 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
462 |
+
self.ups.append(
|
463 |
+
weight_norm(
|
464 |
+
ConvTranspose1d(
|
465 |
+
upsample_initial_channel // (2**i),
|
466 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
467 |
+
k,
|
468 |
+
u,
|
469 |
+
padding=(k - u) // 2,
|
470 |
+
)
|
471 |
+
)
|
472 |
+
)
|
473 |
+
if i + 1 < len(upsample_rates):
|
474 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
475 |
+
self.noise_convs.append(
|
476 |
+
Conv1d(
|
477 |
+
1,
|
478 |
+
c_cur,
|
479 |
+
kernel_size=stride_f0 * 2,
|
480 |
+
stride=stride_f0,
|
481 |
+
padding=stride_f0 // 2,
|
482 |
+
)
|
483 |
+
)
|
484 |
+
else:
|
485 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
486 |
+
|
487 |
+
self.resblocks = nn.ModuleList()
|
488 |
+
for i in range(len(self.ups)):
|
489 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
490 |
+
for j, (k, d) in enumerate(
|
491 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
492 |
+
):
|
493 |
+
self.resblocks.append(resblock(ch, k, d))
|
494 |
+
|
495 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
496 |
+
self.ups.apply(init_weights)
|
497 |
+
|
498 |
+
if gin_channels != 0:
|
499 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
500 |
+
|
501 |
+
self.upp = np.prod(upsample_rates)
|
502 |
+
|
503 |
+
def forward(self, x, f0, g=None):
|
504 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
505 |
+
har_source = har_source.transpose(1, 2)
|
506 |
+
x = self.conv_pre(x)
|
507 |
+
if g is not None:
|
508 |
+
x = x + self.cond(g)
|
509 |
+
|
510 |
+
for i in range(self.num_upsamples):
|
511 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
512 |
+
x = self.ups[i](x)
|
513 |
+
x_source = self.noise_convs[i](har_source)
|
514 |
+
x = x + x_source
|
515 |
+
xs = None
|
516 |
+
for j in range(self.num_kernels):
|
517 |
+
if xs is None:
|
518 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
519 |
+
else:
|
520 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
521 |
+
x = xs / self.num_kernels
|
522 |
+
x = F.leaky_relu(x)
|
523 |
+
x = self.conv_post(x)
|
524 |
+
x = torch.tanh(x)
|
525 |
+
return x
|
526 |
+
|
527 |
+
def remove_weight_norm(self):
|
528 |
+
for l in self.ups:
|
529 |
+
remove_weight_norm(l)
|
530 |
+
for l in self.resblocks:
|
531 |
+
l.remove_weight_norm()
|
532 |
+
|
533 |
+
|
534 |
+
sr2sr = {
|
535 |
+
"32k": 32000,
|
536 |
+
"40k": 40000,
|
537 |
+
"48k": 48000,
|
538 |
+
}
|
539 |
+
|
540 |
+
|
541 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
542 |
+
def __init__(
|
543 |
+
self,
|
544 |
+
spec_channels,
|
545 |
+
segment_size,
|
546 |
+
inter_channels,
|
547 |
+
hidden_channels,
|
548 |
+
filter_channels,
|
549 |
+
n_heads,
|
550 |
+
n_layers,
|
551 |
+
kernel_size,
|
552 |
+
p_dropout,
|
553 |
+
resblock,
|
554 |
+
resblock_kernel_sizes,
|
555 |
+
resblock_dilation_sizes,
|
556 |
+
upsample_rates,
|
557 |
+
upsample_initial_channel,
|
558 |
+
upsample_kernel_sizes,
|
559 |
+
spk_embed_dim,
|
560 |
+
gin_channels,
|
561 |
+
sr,
|
562 |
+
**kwargs
|
563 |
+
):
|
564 |
+
super().__init__()
|
565 |
+
if type(sr) == type("strr"):
|
566 |
+
sr = sr2sr[sr]
|
567 |
+
self.spec_channels = spec_channels
|
568 |
+
self.inter_channels = inter_channels
|
569 |
+
self.hidden_channels = hidden_channels
|
570 |
+
self.filter_channels = filter_channels
|
571 |
+
self.n_heads = n_heads
|
572 |
+
self.n_layers = n_layers
|
573 |
+
self.kernel_size = kernel_size
|
574 |
+
self.p_dropout = p_dropout
|
575 |
+
self.resblock = resblock
|
576 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
577 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
578 |
+
self.upsample_rates = upsample_rates
|
579 |
+
self.upsample_initial_channel = upsample_initial_channel
|
580 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
581 |
+
self.segment_size = segment_size
|
582 |
+
self.gin_channels = gin_channels
|
583 |
+
# self.hop_length = hop_length#
|
584 |
+
self.spk_embed_dim = spk_embed_dim
|
585 |
+
self.enc_p = TextEncoder256(
|
586 |
+
inter_channels,
|
587 |
+
hidden_channels,
|
588 |
+
filter_channels,
|
589 |
+
n_heads,
|
590 |
+
n_layers,
|
591 |
+
kernel_size,
|
592 |
+
p_dropout,
|
593 |
+
)
|
594 |
+
self.dec = GeneratorNSF(
|
595 |
+
inter_channels,
|
596 |
+
resblock,
|
597 |
+
resblock_kernel_sizes,
|
598 |
+
resblock_dilation_sizes,
|
599 |
+
upsample_rates,
|
600 |
+
upsample_initial_channel,
|
601 |
+
upsample_kernel_sizes,
|
602 |
+
gin_channels=gin_channels,
|
603 |
+
sr=sr,
|
604 |
+
is_half=kwargs["is_half"],
|
605 |
+
)
|
606 |
+
self.enc_q = PosteriorEncoder(
|
607 |
+
spec_channels,
|
608 |
+
inter_channels,
|
609 |
+
hidden_channels,
|
610 |
+
5,
|
611 |
+
1,
|
612 |
+
16,
|
613 |
+
gin_channels=gin_channels,
|
614 |
+
)
|
615 |
+
self.flow = ResidualCouplingBlock(
|
616 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
617 |
+
)
|
618 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
619 |
+
logger.debug(
|
620 |
+
"gin_channels: "
|
621 |
+
+ str(gin_channels)
|
622 |
+
+ ", self.spk_embed_dim: "
|
623 |
+
+ str(self.spk_embed_dim)
|
624 |
+
)
|
625 |
+
|
626 |
+
def remove_weight_norm(self):
|
627 |
+
self.dec.remove_weight_norm()
|
628 |
+
self.flow.remove_weight_norm()
|
629 |
+
self.enc_q.remove_weight_norm()
|
630 |
+
|
631 |
+
def forward(
|
632 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
633 |
+
): # 这里ds是id,[bs,1]
|
634 |
+
# print(1,pitch.shape)#[bs,t]
|
635 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
636 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
637 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
638 |
+
z_p = self.flow(z, y_mask, g=g)
|
639 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
640 |
+
z, y_lengths, self.segment_size
|
641 |
+
)
|
642 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
643 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
644 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
645 |
+
o = self.dec(z_slice, pitchf, g=g)
|
646 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
647 |
+
|
648 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
649 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
650 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
651 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
652 |
+
if rate:
|
653 |
+
head = int(z_p.shape[2] * rate)
|
654 |
+
z_p = z_p[:, :, -head:]
|
655 |
+
x_mask = x_mask[:, :, -head:]
|
656 |
+
nsff0 = nsff0[:, -head:]
|
657 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
658 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
659 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
660 |
+
|
661 |
+
|
662 |
+
class SynthesizerTrnMs768NSFsid(nn.Module):
|
663 |
+
def __init__(
|
664 |
+
self,
|
665 |
+
spec_channels,
|
666 |
+
segment_size,
|
667 |
+
inter_channels,
|
668 |
+
hidden_channels,
|
669 |
+
filter_channels,
|
670 |
+
n_heads,
|
671 |
+
n_layers,
|
672 |
+
kernel_size,
|
673 |
+
p_dropout,
|
674 |
+
resblock,
|
675 |
+
resblock_kernel_sizes,
|
676 |
+
resblock_dilation_sizes,
|
677 |
+
upsample_rates,
|
678 |
+
upsample_initial_channel,
|
679 |
+
upsample_kernel_sizes,
|
680 |
+
spk_embed_dim,
|
681 |
+
gin_channels,
|
682 |
+
sr,
|
683 |
+
**kwargs
|
684 |
+
):
|
685 |
+
super().__init__()
|
686 |
+
if type(sr) == type("strr"):
|
687 |
+
sr = sr2sr[sr]
|
688 |
+
self.spec_channels = spec_channels
|
689 |
+
self.inter_channels = inter_channels
|
690 |
+
self.hidden_channels = hidden_channels
|
691 |
+
self.filter_channels = filter_channels
|
692 |
+
self.n_heads = n_heads
|
693 |
+
self.n_layers = n_layers
|
694 |
+
self.kernel_size = kernel_size
|
695 |
+
self.p_dropout = p_dropout
|
696 |
+
self.resblock = resblock
|
697 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
698 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
699 |
+
self.upsample_rates = upsample_rates
|
700 |
+
self.upsample_initial_channel = upsample_initial_channel
|
701 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
702 |
+
self.segment_size = segment_size
|
703 |
+
self.gin_channels = gin_channels
|
704 |
+
# self.hop_length = hop_length#
|
705 |
+
self.spk_embed_dim = spk_embed_dim
|
706 |
+
self.enc_p = TextEncoder768(
|
707 |
+
inter_channels,
|
708 |
+
hidden_channels,
|
709 |
+
filter_channels,
|
710 |
+
n_heads,
|
711 |
+
n_layers,
|
712 |
+
kernel_size,
|
713 |
+
p_dropout,
|
714 |
+
)
|
715 |
+
self.dec = GeneratorNSF(
|
716 |
+
inter_channels,
|
717 |
+
resblock,
|
718 |
+
resblock_kernel_sizes,
|
719 |
+
resblock_dilation_sizes,
|
720 |
+
upsample_rates,
|
721 |
+
upsample_initial_channel,
|
722 |
+
upsample_kernel_sizes,
|
723 |
+
gin_channels=gin_channels,
|
724 |
+
sr=sr,
|
725 |
+
is_half=kwargs["is_half"],
|
726 |
+
)
|
727 |
+
self.enc_q = PosteriorEncoder(
|
728 |
+
spec_channels,
|
729 |
+
inter_channels,
|
730 |
+
hidden_channels,
|
731 |
+
5,
|
732 |
+
1,
|
733 |
+
16,
|
734 |
+
gin_channels=gin_channels,
|
735 |
+
)
|
736 |
+
self.flow = ResidualCouplingBlock(
|
737 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
738 |
+
)
|
739 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
740 |
+
logger.debug(
|
741 |
+
"gin_channels: "
|
742 |
+
+ str(gin_channels)
|
743 |
+
+ ", self.spk_embed_dim: "
|
744 |
+
+ str(self.spk_embed_dim)
|
745 |
+
)
|
746 |
+
|
747 |
+
def remove_weight_norm(self):
|
748 |
+
self.dec.remove_weight_norm()
|
749 |
+
self.flow.remove_weight_norm()
|
750 |
+
self.enc_q.remove_weight_norm()
|
751 |
+
|
752 |
+
def forward(
|
753 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
754 |
+
): # 这里ds是id,[bs,1]
|
755 |
+
# print(1,pitch.shape)#[bs,t]
|
756 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
757 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
758 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
759 |
+
z_p = self.flow(z, y_mask, g=g)
|
760 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
761 |
+
z, y_lengths, self.segment_size
|
762 |
+
)
|
763 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
764 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
765 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
766 |
+
o = self.dec(z_slice, pitchf, g=g)
|
767 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
768 |
+
|
769 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
770 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
771 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
772 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
773 |
+
if rate:
|
774 |
+
head = int(z_p.shape[2] * rate)
|
775 |
+
z_p = z_p[:, :, -head:]
|
776 |
+
x_mask = x_mask[:, :, -head:]
|
777 |
+
nsff0 = nsff0[:, -head:]
|
778 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
779 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
780 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
781 |
+
|
782 |
+
|
783 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
784 |
+
def __init__(
|
785 |
+
self,
|
786 |
+
spec_channels,
|
787 |
+
segment_size,
|
788 |
+
inter_channels,
|
789 |
+
hidden_channels,
|
790 |
+
filter_channels,
|
791 |
+
n_heads,
|
792 |
+
n_layers,
|
793 |
+
kernel_size,
|
794 |
+
p_dropout,
|
795 |
+
resblock,
|
796 |
+
resblock_kernel_sizes,
|
797 |
+
resblock_dilation_sizes,
|
798 |
+
upsample_rates,
|
799 |
+
upsample_initial_channel,
|
800 |
+
upsample_kernel_sizes,
|
801 |
+
spk_embed_dim,
|
802 |
+
gin_channels,
|
803 |
+
sr=None,
|
804 |
+
**kwargs
|
805 |
+
):
|
806 |
+
super().__init__()
|
807 |
+
self.spec_channels = spec_channels
|
808 |
+
self.inter_channels = inter_channels
|
809 |
+
self.hidden_channels = hidden_channels
|
810 |
+
self.filter_channels = filter_channels
|
811 |
+
self.n_heads = n_heads
|
812 |
+
self.n_layers = n_layers
|
813 |
+
self.kernel_size = kernel_size
|
814 |
+
self.p_dropout = p_dropout
|
815 |
+
self.resblock = resblock
|
816 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
817 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
818 |
+
self.upsample_rates = upsample_rates
|
819 |
+
self.upsample_initial_channel = upsample_initial_channel
|
820 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
821 |
+
self.segment_size = segment_size
|
822 |
+
self.gin_channels = gin_channels
|
823 |
+
# self.hop_length = hop_length#
|
824 |
+
self.spk_embed_dim = spk_embed_dim
|
825 |
+
self.enc_p = TextEncoder256(
|
826 |
+
inter_channels,
|
827 |
+
hidden_channels,
|
828 |
+
filter_channels,
|
829 |
+
n_heads,
|
830 |
+
n_layers,
|
831 |
+
kernel_size,
|
832 |
+
p_dropout,
|
833 |
+
f0=False,
|
834 |
+
)
|
835 |
+
self.dec = Generator(
|
836 |
+
inter_channels,
|
837 |
+
resblock,
|
838 |
+
resblock_kernel_sizes,
|
839 |
+
resblock_dilation_sizes,
|
840 |
+
upsample_rates,
|
841 |
+
upsample_initial_channel,
|
842 |
+
upsample_kernel_sizes,
|
843 |
+
gin_channels=gin_channels,
|
844 |
+
)
|
845 |
+
self.enc_q = PosteriorEncoder(
|
846 |
+
spec_channels,
|
847 |
+
inter_channels,
|
848 |
+
hidden_channels,
|
849 |
+
5,
|
850 |
+
1,
|
851 |
+
16,
|
852 |
+
gin_channels=gin_channels,
|
853 |
+
)
|
854 |
+
self.flow = ResidualCouplingBlock(
|
855 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
856 |
+
)
|
857 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
858 |
+
logger.debug(
|
859 |
+
"gin_channels: "
|
860 |
+
+ str(gin_channels)
|
861 |
+
+ ", self.spk_embed_dim: "
|
862 |
+
+ str(self.spk_embed_dim)
|
863 |
+
)
|
864 |
+
|
865 |
+
def remove_weight_norm(self):
|
866 |
+
self.dec.remove_weight_norm()
|
867 |
+
self.flow.remove_weight_norm()
|
868 |
+
self.enc_q.remove_weight_norm()
|
869 |
+
|
870 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
871 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
872 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
873 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
874 |
+
z_p = self.flow(z, y_mask, g=g)
|
875 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
876 |
+
z, y_lengths, self.segment_size
|
877 |
+
)
|
878 |
+
o = self.dec(z_slice, g=g)
|
879 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
880 |
+
|
881 |
+
def infer(self, phone, phone_lengths, sid, rate=None):
|
882 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
883 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
884 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
885 |
+
if rate:
|
886 |
+
head = int(z_p.shape[2] * rate)
|
887 |
+
z_p = z_p[:, :, -head:]
|
888 |
+
x_mask = x_mask[:, :, -head:]
|
889 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
890 |
+
o = self.dec(z * x_mask, g=g)
|
891 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
892 |
+
|
893 |
+
|
894 |
+
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
895 |
+
def __init__(
|
896 |
+
self,
|
897 |
+
spec_channels,
|
898 |
+
segment_size,
|
899 |
+
inter_channels,
|
900 |
+
hidden_channels,
|
901 |
+
filter_channels,
|
902 |
+
n_heads,
|
903 |
+
n_layers,
|
904 |
+
kernel_size,
|
905 |
+
p_dropout,
|
906 |
+
resblock,
|
907 |
+
resblock_kernel_sizes,
|
908 |
+
resblock_dilation_sizes,
|
909 |
+
upsample_rates,
|
910 |
+
upsample_initial_channel,
|
911 |
+
upsample_kernel_sizes,
|
912 |
+
spk_embed_dim,
|
913 |
+
gin_channels,
|
914 |
+
sr=None,
|
915 |
+
**kwargs
|
916 |
+
):
|
917 |
+
super().__init__()
|
918 |
+
self.spec_channels = spec_channels
|
919 |
+
self.inter_channels = inter_channels
|
920 |
+
self.hidden_channels = hidden_channels
|
921 |
+
self.filter_channels = filter_channels
|
922 |
+
self.n_heads = n_heads
|
923 |
+
self.n_layers = n_layers
|
924 |
+
self.kernel_size = kernel_size
|
925 |
+
self.p_dropout = p_dropout
|
926 |
+
self.resblock = resblock
|
927 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
928 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
929 |
+
self.upsample_rates = upsample_rates
|
930 |
+
self.upsample_initial_channel = upsample_initial_channel
|
931 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
932 |
+
self.segment_size = segment_size
|
933 |
+
self.gin_channels = gin_channels
|
934 |
+
# self.hop_length = hop_length#
|
935 |
+
self.spk_embed_dim = spk_embed_dim
|
936 |
+
self.enc_p = TextEncoder768(
|
937 |
+
inter_channels,
|
938 |
+
hidden_channels,
|
939 |
+
filter_channels,
|
940 |
+
n_heads,
|
941 |
+
n_layers,
|
942 |
+
kernel_size,
|
943 |
+
p_dropout,
|
944 |
+
f0=False,
|
945 |
+
)
|
946 |
+
self.dec = Generator(
|
947 |
+
inter_channels,
|
948 |
+
resblock,
|
949 |
+
resblock_kernel_sizes,
|
950 |
+
resblock_dilation_sizes,
|
951 |
+
upsample_rates,
|
952 |
+
upsample_initial_channel,
|
953 |
+
upsample_kernel_sizes,
|
954 |
+
gin_channels=gin_channels,
|
955 |
+
)
|
956 |
+
self.enc_q = PosteriorEncoder(
|
957 |
+
spec_channels,
|
958 |
+
inter_channels,
|
959 |
+
hidden_channels,
|
960 |
+
5,
|
961 |
+
1,
|
962 |
+
16,
|
963 |
+
gin_channels=gin_channels,
|
964 |
+
)
|
965 |
+
self.flow = ResidualCouplingBlock(
|
966 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
967 |
+
)
|
968 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
969 |
+
logger.debug(
|
970 |
+
"gin_channels: "
|
971 |
+
+ str(gin_channels)
|
972 |
+
+ ", self.spk_embed_dim: "
|
973 |
+
+ str(self.spk_embed_dim)
|
974 |
+
)
|
975 |
+
|
976 |
+
def remove_weight_norm(self):
|
977 |
+
self.dec.remove_weight_norm()
|
978 |
+
self.flow.remove_weight_norm()
|
979 |
+
self.enc_q.remove_weight_norm()
|
980 |
+
|
981 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
982 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
983 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
984 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
985 |
+
z_p = self.flow(z, y_mask, g=g)
|
986 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
987 |
+
z, y_lengths, self.segment_size
|
988 |
+
)
|
989 |
+
o = self.dec(z_slice, g=g)
|
990 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
991 |
+
|
992 |
+
def infer(self, phone, phone_lengths, sid, rate=None):
|
993 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
994 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
995 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
996 |
+
if rate:
|
997 |
+
head = int(z_p.shape[2] * rate)
|
998 |
+
z_p = z_p[:, :, -head:]
|
999 |
+
x_mask = x_mask[:, :, -head:]
|
1000 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
1001 |
+
o = self.dec(z * x_mask, g=g)
|
1002 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
1003 |
+
|
1004 |
+
|
1005 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
1006 |
+
def __init__(self, use_spectral_norm=False):
|
1007 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
1008 |
+
periods = [2, 3, 5, 7, 11, 17]
|
1009 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
1010 |
+
|
1011 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1012 |
+
discs = discs + [
|
1013 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1014 |
+
]
|
1015 |
+
self.discriminators = nn.ModuleList(discs)
|
1016 |
+
|
1017 |
+
def forward(self, y, y_hat):
|
1018 |
+
y_d_rs = [] #
|
1019 |
+
y_d_gs = []
|
1020 |
+
fmap_rs = []
|
1021 |
+
fmap_gs = []
|
1022 |
+
for i, d in enumerate(self.discriminators):
|
1023 |
+
y_d_r, fmap_r = d(y)
|
1024 |
+
y_d_g, fmap_g = d(y_hat)
|
1025 |
+
# for j in range(len(fmap_r)):
|
1026 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1027 |
+
y_d_rs.append(y_d_r)
|
1028 |
+
y_d_gs.append(y_d_g)
|
1029 |
+
fmap_rs.append(fmap_r)
|
1030 |
+
fmap_gs.append(fmap_g)
|
1031 |
+
|
1032 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1033 |
+
|
1034 |
+
|
1035 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
1036 |
+
def __init__(self, use_spectral_norm=False):
|
1037 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
1038 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
1039 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
1040 |
+
|
1041 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1042 |
+
discs = discs + [
|
1043 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1044 |
+
]
|
1045 |
+
self.discriminators = nn.ModuleList(discs)
|
1046 |
+
|
1047 |
+
def forward(self, y, y_hat):
|
1048 |
+
y_d_rs = [] #
|
1049 |
+
y_d_gs = []
|
1050 |
+
fmap_rs = []
|
1051 |
+
fmap_gs = []
|
1052 |
+
for i, d in enumerate(self.discriminators):
|
1053 |
+
y_d_r, fmap_r = d(y)
|
1054 |
+
y_d_g, fmap_g = d(y_hat)
|
1055 |
+
# for j in range(len(fmap_r)):
|
1056 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1057 |
+
y_d_rs.append(y_d_r)
|
1058 |
+
y_d_gs.append(y_d_g)
|
1059 |
+
fmap_rs.append(fmap_r)
|
1060 |
+
fmap_gs.append(fmap_g)
|
1061 |
+
|
1062 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1063 |
+
|
1064 |
+
|
1065 |
+
class DiscriminatorS(torch.nn.Module):
|
1066 |
+
def __init__(self, use_spectral_norm=False):
|
1067 |
+
super(DiscriminatorS, self).__init__()
|
1068 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1069 |
+
self.convs = nn.ModuleList(
|
1070 |
+
[
|
1071 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1072 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1073 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1074 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1075 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1076 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1077 |
+
]
|
1078 |
+
)
|
1079 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1080 |
+
|
1081 |
+
def forward(self, x):
|
1082 |
+
fmap = []
|
1083 |
+
|
1084 |
+
for l in self.convs:
|
1085 |
+
x = l(x)
|
1086 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1087 |
+
fmap.append(x)
|
1088 |
+
x = self.conv_post(x)
|
1089 |
+
fmap.append(x)
|
1090 |
+
x = torch.flatten(x, 1, -1)
|
1091 |
+
|
1092 |
+
return x, fmap
|
1093 |
+
|
1094 |
+
|
1095 |
+
class DiscriminatorP(torch.nn.Module):
|
1096 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1097 |
+
super(DiscriminatorP, self).__init__()
|
1098 |
+
self.period = period
|
1099 |
+
self.use_spectral_norm = use_spectral_norm
|
1100 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1101 |
+
self.convs = nn.ModuleList(
|
1102 |
+
[
|
1103 |
+
norm_f(
|
1104 |
+
Conv2d(
|
1105 |
+
1,
|
1106 |
+
32,
|
1107 |
+
(kernel_size, 1),
|
1108 |
+
(stride, 1),
|
1109 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1110 |
+
)
|
1111 |
+
),
|
1112 |
+
norm_f(
|
1113 |
+
Conv2d(
|
1114 |
+
32,
|
1115 |
+
128,
|
1116 |
+
(kernel_size, 1),
|
1117 |
+
(stride, 1),
|
1118 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1119 |
+
)
|
1120 |
+
),
|
1121 |
+
norm_f(
|
1122 |
+
Conv2d(
|
1123 |
+
128,
|
1124 |
+
512,
|
1125 |
+
(kernel_size, 1),
|
1126 |
+
(stride, 1),
|
1127 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1128 |
+
)
|
1129 |
+
),
|
1130 |
+
norm_f(
|
1131 |
+
Conv2d(
|
1132 |
+
512,
|
1133 |
+
1024,
|
1134 |
+
(kernel_size, 1),
|
1135 |
+
(stride, 1),
|
1136 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1137 |
+
)
|
1138 |
+
),
|
1139 |
+
norm_f(
|
1140 |
+
Conv2d(
|
1141 |
+
1024,
|
1142 |
+
1024,
|
1143 |
+
(kernel_size, 1),
|
1144 |
+
1,
|
1145 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1146 |
+
)
|
1147 |
+
),
|
1148 |
+
]
|
1149 |
+
)
|
1150 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1151 |
+
|
1152 |
+
def forward(self, x):
|
1153 |
+
fmap = []
|
1154 |
+
|
1155 |
+
# 1d to 2d
|
1156 |
+
b, c, t = x.shape
|
1157 |
+
if t % self.period != 0: # pad first
|
1158 |
+
n_pad = self.period - (t % self.period)
|
1159 |
+
if has_xpu and x.dtype == torch.bfloat16:
|
1160 |
+
x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to(dtype=torch.bfloat16)
|
1161 |
+
else:
|
1162 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
1163 |
+
t = t + n_pad
|
1164 |
+
x = x.view(b, c, t // self.period, self.period)
|
1165 |
+
|
1166 |
+
for l in self.convs:
|
1167 |
+
x = l(x)
|
1168 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1169 |
+
fmap.append(x)
|
1170 |
+
x = self.conv_post(x)
|
1171 |
+
fmap.append(x)
|
1172 |
+
x = torch.flatten(x, 1, -1)
|
1173 |
+
|
1174 |
+
return x, fmap
|
infer/lib/infer_pack/models_onnx.py
ADDED
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logger = logging.getLogger(__name__)
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
12 |
+
|
13 |
+
from infer.lib.infer_pack import attentions, commons, modules
|
14 |
+
from infer.lib.infer_pack.commons import get_padding, init_weights
|
15 |
+
|
16 |
+
|
17 |
+
class TextEncoder256(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
out_channels,
|
21 |
+
hidden_channels,
|
22 |
+
filter_channels,
|
23 |
+
n_heads,
|
24 |
+
n_layers,
|
25 |
+
kernel_size,
|
26 |
+
p_dropout,
|
27 |
+
f0=True,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.out_channels = out_channels
|
31 |
+
self.hidden_channels = hidden_channels
|
32 |
+
self.filter_channels = filter_channels
|
33 |
+
self.n_heads = n_heads
|
34 |
+
self.n_layers = n_layers
|
35 |
+
self.kernel_size = kernel_size
|
36 |
+
self.p_dropout = p_dropout
|
37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
+
if f0 == True:
|
40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
+
self.encoder = attentions.Encoder(
|
42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
+
)
|
44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
+
|
46 |
+
def forward(self, phone, pitch, lengths):
|
47 |
+
if pitch == None:
|
48 |
+
x = self.emb_phone(phone)
|
49 |
+
else:
|
50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
+
x = self.lrelu(x)
|
53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
+
x.dtype
|
56 |
+
)
|
57 |
+
x = self.encoder(x * x_mask, x_mask)
|
58 |
+
stats = self.proj(x) * x_mask
|
59 |
+
|
60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
+
return m, logs, x_mask
|
62 |
+
|
63 |
+
|
64 |
+
class TextEncoder768(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
out_channels,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size,
|
73 |
+
p_dropout,
|
74 |
+
f0=True,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
self.out_channels = out_channels
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
+
if f0 == True:
|
87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
+
self.encoder = attentions.Encoder(
|
89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
+
)
|
91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
+
|
93 |
+
def forward(self, phone, pitch, lengths):
|
94 |
+
if pitch == None:
|
95 |
+
x = self.emb_phone(phone)
|
96 |
+
else:
|
97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
+
x = self.lrelu(x)
|
100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
+
x.dtype
|
103 |
+
)
|
104 |
+
x = self.encoder(x * x_mask, x_mask)
|
105 |
+
stats = self.proj(x) * x_mask
|
106 |
+
|
107 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
+
return m, logs, x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class ResidualCouplingBlock(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
channels,
|
115 |
+
hidden_channels,
|
116 |
+
kernel_size,
|
117 |
+
dilation_rate,
|
118 |
+
n_layers,
|
119 |
+
n_flows=4,
|
120 |
+
gin_channels=0,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.channels = channels
|
124 |
+
self.hidden_channels = hidden_channels
|
125 |
+
self.kernel_size = kernel_size
|
126 |
+
self.dilation_rate = dilation_rate
|
127 |
+
self.n_layers = n_layers
|
128 |
+
self.n_flows = n_flows
|
129 |
+
self.gin_channels = gin_channels
|
130 |
+
|
131 |
+
self.flows = nn.ModuleList()
|
132 |
+
for i in range(n_flows):
|
133 |
+
self.flows.append(
|
134 |
+
modules.ResidualCouplingLayer(
|
135 |
+
channels,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=gin_channels,
|
141 |
+
mean_only=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
self.flows.append(modules.Flip())
|
145 |
+
|
146 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
+
if not reverse:
|
148 |
+
for flow in self.flows:
|
149 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
+
else:
|
151 |
+
for flow in reversed(self.flows):
|
152 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
+
return x
|
154 |
+
|
155 |
+
def remove_weight_norm(self):
|
156 |
+
for i in range(self.n_flows):
|
157 |
+
self.flows[i * 2].remove_weight_norm()
|
158 |
+
|
159 |
+
|
160 |
+
class PosteriorEncoder(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
in_channels,
|
164 |
+
out_channels,
|
165 |
+
hidden_channels,
|
166 |
+
kernel_size,
|
167 |
+
dilation_rate,
|
168 |
+
n_layers,
|
169 |
+
gin_channels=0,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
self.in_channels = in_channels
|
173 |
+
self.out_channels = out_channels
|
174 |
+
self.hidden_channels = hidden_channels
|
175 |
+
self.kernel_size = kernel_size
|
176 |
+
self.dilation_rate = dilation_rate
|
177 |
+
self.n_layers = n_layers
|
178 |
+
self.gin_channels = gin_channels
|
179 |
+
|
180 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
+
self.enc = modules.WN(
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
gin_channels=gin_channels,
|
187 |
+
)
|
188 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
+
|
190 |
+
def forward(self, x, x_lengths, g=None):
|
191 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
+
x.dtype
|
193 |
+
)
|
194 |
+
x = self.pre(x) * x_mask
|
195 |
+
x = self.enc(x, x_mask, g=g)
|
196 |
+
stats = self.proj(x) * x_mask
|
197 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
+
return z, m, logs, x_mask
|
200 |
+
|
201 |
+
def remove_weight_norm(self):
|
202 |
+
self.enc.remove_weight_norm()
|
203 |
+
|
204 |
+
|
205 |
+
class Generator(torch.nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
initial_channel,
|
209 |
+
resblock,
|
210 |
+
resblock_kernel_sizes,
|
211 |
+
resblock_dilation_sizes,
|
212 |
+
upsample_rates,
|
213 |
+
upsample_initial_channel,
|
214 |
+
upsample_kernel_sizes,
|
215 |
+
gin_channels=0,
|
216 |
+
):
|
217 |
+
super(Generator, self).__init__()
|
218 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
+
self.num_upsamples = len(upsample_rates)
|
220 |
+
self.conv_pre = Conv1d(
|
221 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
+
)
|
223 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
+
|
225 |
+
self.ups = nn.ModuleList()
|
226 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
+
self.ups.append(
|
228 |
+
weight_norm(
|
229 |
+
ConvTranspose1d(
|
230 |
+
upsample_initial_channel // (2**i),
|
231 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
+
k,
|
233 |
+
u,
|
234 |
+
padding=(k - u) // 2,
|
235 |
+
)
|
236 |
+
)
|
237 |
+
)
|
238 |
+
|
239 |
+
self.resblocks = nn.ModuleList()
|
240 |
+
for i in range(len(self.ups)):
|
241 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
+
for j, (k, d) in enumerate(
|
243 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
+
):
|
245 |
+
self.resblocks.append(resblock(ch, k, d))
|
246 |
+
|
247 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
+
self.ups.apply(init_weights)
|
249 |
+
|
250 |
+
if gin_channels != 0:
|
251 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
+
|
253 |
+
def forward(self, x, g=None):
|
254 |
+
x = self.conv_pre(x)
|
255 |
+
if g is not None:
|
256 |
+
x = x + self.cond(g)
|
257 |
+
|
258 |
+
for i in range(self.num_upsamples):
|
259 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
+
x = self.ups[i](x)
|
261 |
+
xs = None
|
262 |
+
for j in range(self.num_kernels):
|
263 |
+
if xs is None:
|
264 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
+
else:
|
266 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
+
x = xs / self.num_kernels
|
268 |
+
x = F.leaky_relu(x)
|
269 |
+
x = self.conv_post(x)
|
270 |
+
x = torch.tanh(x)
|
271 |
+
|
272 |
+
return x
|
273 |
+
|
274 |
+
def remove_weight_norm(self):
|
275 |
+
for l in self.ups:
|
276 |
+
remove_weight_norm(l)
|
277 |
+
for l in self.resblocks:
|
278 |
+
l.remove_weight_norm()
|
279 |
+
|
280 |
+
|
281 |
+
class SineGen(torch.nn.Module):
|
282 |
+
"""Definition of sine generator
|
283 |
+
SineGen(samp_rate, harmonic_num = 0,
|
284 |
+
sine_amp = 0.1, noise_std = 0.003,
|
285 |
+
voiced_threshold = 0,
|
286 |
+
flag_for_pulse=False)
|
287 |
+
samp_rate: sampling rate in Hz
|
288 |
+
harmonic_num: number of harmonic overtones (default 0)
|
289 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
+
noise_std: std of Gaussian noise (default 0.003)
|
291 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
+
segment is always sin(np.pi) or cos(0)
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
samp_rate,
|
300 |
+
harmonic_num=0,
|
301 |
+
sine_amp=0.1,
|
302 |
+
noise_std=0.003,
|
303 |
+
voiced_threshold=0,
|
304 |
+
flag_for_pulse=False,
|
305 |
+
):
|
306 |
+
super(SineGen, self).__init__()
|
307 |
+
self.sine_amp = sine_amp
|
308 |
+
self.noise_std = noise_std
|
309 |
+
self.harmonic_num = harmonic_num
|
310 |
+
self.dim = self.harmonic_num + 1
|
311 |
+
self.sampling_rate = samp_rate
|
312 |
+
self.voiced_threshold = voiced_threshold
|
313 |
+
|
314 |
+
def _f02uv(self, f0):
|
315 |
+
# generate uv signal
|
316 |
+
uv = torch.ones_like(f0)
|
317 |
+
uv = uv * (f0 > self.voiced_threshold)
|
318 |
+
return uv
|
319 |
+
|
320 |
+
def forward(self, f0, upp):
|
321 |
+
"""sine_tensor, uv = forward(f0)
|
322 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
323 |
+
f0 for unvoiced steps should be 0
|
324 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
325 |
+
output uv: tensor(batchsize=1, length, 1)
|
326 |
+
"""
|
327 |
+
with torch.no_grad():
|
328 |
+
f0 = f0[:, None].transpose(1, 2)
|
329 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
330 |
+
# fundamental component
|
331 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
332 |
+
for idx in np.arange(self.harmonic_num):
|
333 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
334 |
+
idx + 2
|
335 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
336 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
337 |
+
rand_ini = torch.rand(
|
338 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
339 |
+
)
|
340 |
+
rand_ini[:, 0] = 0
|
341 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
342 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
343 |
+
tmp_over_one *= upp
|
344 |
+
tmp_over_one = F.interpolate(
|
345 |
+
tmp_over_one.transpose(2, 1),
|
346 |
+
scale_factor=upp,
|
347 |
+
mode="linear",
|
348 |
+
align_corners=True,
|
349 |
+
).transpose(2, 1)
|
350 |
+
rad_values = F.interpolate(
|
351 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
352 |
+
).transpose(
|
353 |
+
2, 1
|
354 |
+
) #######
|
355 |
+
tmp_over_one %= 1
|
356 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
357 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
358 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
359 |
+
sine_waves = torch.sin(
|
360 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
361 |
+
)
|
362 |
+
sine_waves = sine_waves * self.sine_amp
|
363 |
+
uv = self._f02uv(f0)
|
364 |
+
uv = F.interpolate(
|
365 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
366 |
+
).transpose(2, 1)
|
367 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
368 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
369 |
+
sine_waves = sine_waves * uv + noise
|
370 |
+
return sine_waves, uv, noise
|
371 |
+
|
372 |
+
|
373 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
374 |
+
"""SourceModule for hn-nsf
|
375 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
376 |
+
add_noise_std=0.003, voiced_threshod=0)
|
377 |
+
sampling_rate: sampling_rate in Hz
|
378 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
379 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
380 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
381 |
+
note that amplitude of noise in unvoiced is decided
|
382 |
+
by sine_amp
|
383 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
384 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
385 |
+
F0_sampled (batchsize, length, 1)
|
386 |
+
Sine_source (batchsize, length, 1)
|
387 |
+
noise_source (batchsize, length 1)
|
388 |
+
uv (batchsize, length, 1)
|
389 |
+
"""
|
390 |
+
|
391 |
+
def __init__(
|
392 |
+
self,
|
393 |
+
sampling_rate,
|
394 |
+
harmonic_num=0,
|
395 |
+
sine_amp=0.1,
|
396 |
+
add_noise_std=0.003,
|
397 |
+
voiced_threshod=0,
|
398 |
+
is_half=True,
|
399 |
+
):
|
400 |
+
super(SourceModuleHnNSF, self).__init__()
|
401 |
+
|
402 |
+
self.sine_amp = sine_amp
|
403 |
+
self.noise_std = add_noise_std
|
404 |
+
self.is_half = is_half
|
405 |
+
# to produce sine waveforms
|
406 |
+
self.l_sin_gen = SineGen(
|
407 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
408 |
+
)
|
409 |
+
|
410 |
+
# to merge source harmonics into a single excitation
|
411 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
412 |
+
self.l_tanh = torch.nn.Tanh()
|
413 |
+
|
414 |
+
def forward(self, x, upp=None):
|
415 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
416 |
+
if self.is_half:
|
417 |
+
sine_wavs = sine_wavs.half()
|
418 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
419 |
+
return sine_merge, None, None # noise, uv
|
420 |
+
|
421 |
+
|
422 |
+
class GeneratorNSF(torch.nn.Module):
|
423 |
+
def __init__(
|
424 |
+
self,
|
425 |
+
initial_channel,
|
426 |
+
resblock,
|
427 |
+
resblock_kernel_sizes,
|
428 |
+
resblock_dilation_sizes,
|
429 |
+
upsample_rates,
|
430 |
+
upsample_initial_channel,
|
431 |
+
upsample_kernel_sizes,
|
432 |
+
gin_channels,
|
433 |
+
sr,
|
434 |
+
is_half=False,
|
435 |
+
):
|
436 |
+
super(GeneratorNSF, self).__init__()
|
437 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
438 |
+
self.num_upsamples = len(upsample_rates)
|
439 |
+
|
440 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
441 |
+
self.m_source = SourceModuleHnNSF(
|
442 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
443 |
+
)
|
444 |
+
self.noise_convs = nn.ModuleList()
|
445 |
+
self.conv_pre = Conv1d(
|
446 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
447 |
+
)
|
448 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
449 |
+
|
450 |
+
self.ups = nn.ModuleList()
|
451 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
452 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
453 |
+
self.ups.append(
|
454 |
+
weight_norm(
|
455 |
+
ConvTranspose1d(
|
456 |
+
upsample_initial_channel // (2**i),
|
457 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
458 |
+
k,
|
459 |
+
u,
|
460 |
+
padding=(k - u) // 2,
|
461 |
+
)
|
462 |
+
)
|
463 |
+
)
|
464 |
+
if i + 1 < len(upsample_rates):
|
465 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
466 |
+
self.noise_convs.append(
|
467 |
+
Conv1d(
|
468 |
+
1,
|
469 |
+
c_cur,
|
470 |
+
kernel_size=stride_f0 * 2,
|
471 |
+
stride=stride_f0,
|
472 |
+
padding=stride_f0 // 2,
|
473 |
+
)
|
474 |
+
)
|
475 |
+
else:
|
476 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
477 |
+
|
478 |
+
self.resblocks = nn.ModuleList()
|
479 |
+
for i in range(len(self.ups)):
|
480 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
481 |
+
for j, (k, d) in enumerate(
|
482 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
483 |
+
):
|
484 |
+
self.resblocks.append(resblock(ch, k, d))
|
485 |
+
|
486 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
487 |
+
self.ups.apply(init_weights)
|
488 |
+
|
489 |
+
if gin_channels != 0:
|
490 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
491 |
+
|
492 |
+
self.upp = np.prod(upsample_rates)
|
493 |
+
|
494 |
+
def forward(self, x, f0, g=None):
|
495 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
496 |
+
har_source = har_source.transpose(1, 2)
|
497 |
+
x = self.conv_pre(x)
|
498 |
+
if g is not None:
|
499 |
+
x = x + self.cond(g)
|
500 |
+
|
501 |
+
for i in range(self.num_upsamples):
|
502 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
503 |
+
x = self.ups[i](x)
|
504 |
+
x_source = self.noise_convs[i](har_source)
|
505 |
+
x = x + x_source
|
506 |
+
xs = None
|
507 |
+
for j in range(self.num_kernels):
|
508 |
+
if xs is None:
|
509 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
510 |
+
else:
|
511 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
512 |
+
x = xs / self.num_kernels
|
513 |
+
x = F.leaky_relu(x)
|
514 |
+
x = self.conv_post(x)
|
515 |
+
x = torch.tanh(x)
|
516 |
+
return x
|
517 |
+
|
518 |
+
def remove_weight_norm(self):
|
519 |
+
for l in self.ups:
|
520 |
+
remove_weight_norm(l)
|
521 |
+
for l in self.resblocks:
|
522 |
+
l.remove_weight_norm()
|
523 |
+
|
524 |
+
|
525 |
+
sr2sr = {
|
526 |
+
"32k": 32000,
|
527 |
+
"40k": 40000,
|
528 |
+
"48k": 48000,
|
529 |
+
}
|
530 |
+
|
531 |
+
|
532 |
+
class SynthesizerTrnMsNSFsidM(nn.Module):
|
533 |
+
def __init__(
|
534 |
+
self,
|
535 |
+
spec_channels,
|
536 |
+
segment_size,
|
537 |
+
inter_channels,
|
538 |
+
hidden_channels,
|
539 |
+
filter_channels,
|
540 |
+
n_heads,
|
541 |
+
n_layers,
|
542 |
+
kernel_size,
|
543 |
+
p_dropout,
|
544 |
+
resblock,
|
545 |
+
resblock_kernel_sizes,
|
546 |
+
resblock_dilation_sizes,
|
547 |
+
upsample_rates,
|
548 |
+
upsample_initial_channel,
|
549 |
+
upsample_kernel_sizes,
|
550 |
+
spk_embed_dim,
|
551 |
+
gin_channels,
|
552 |
+
sr,
|
553 |
+
version,
|
554 |
+
**kwargs
|
555 |
+
):
|
556 |
+
super().__init__()
|
557 |
+
if type(sr) == type("strr"):
|
558 |
+
sr = sr2sr[sr]
|
559 |
+
self.spec_channels = spec_channels
|
560 |
+
self.inter_channels = inter_channels
|
561 |
+
self.hidden_channels = hidden_channels
|
562 |
+
self.filter_channels = filter_channels
|
563 |
+
self.n_heads = n_heads
|
564 |
+
self.n_layers = n_layers
|
565 |
+
self.kernel_size = kernel_size
|
566 |
+
self.p_dropout = p_dropout
|
567 |
+
self.resblock = resblock
|
568 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
569 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
570 |
+
self.upsample_rates = upsample_rates
|
571 |
+
self.upsample_initial_channel = upsample_initial_channel
|
572 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
573 |
+
self.segment_size = segment_size
|
574 |
+
self.gin_channels = gin_channels
|
575 |
+
# self.hop_length = hop_length#
|
576 |
+
self.spk_embed_dim = spk_embed_dim
|
577 |
+
if version == "v1":
|
578 |
+
self.enc_p = TextEncoder256(
|
579 |
+
inter_channels,
|
580 |
+
hidden_channels,
|
581 |
+
filter_channels,
|
582 |
+
n_heads,
|
583 |
+
n_layers,
|
584 |
+
kernel_size,
|
585 |
+
p_dropout,
|
586 |
+
)
|
587 |
+
else:
|
588 |
+
self.enc_p = TextEncoder768(
|
589 |
+
inter_channels,
|
590 |
+
hidden_channels,
|
591 |
+
filter_channels,
|
592 |
+
n_heads,
|
593 |
+
n_layers,
|
594 |
+
kernel_size,
|
595 |
+
p_dropout,
|
596 |
+
)
|
597 |
+
self.dec = GeneratorNSF(
|
598 |
+
inter_channels,
|
599 |
+
resblock,
|
600 |
+
resblock_kernel_sizes,
|
601 |
+
resblock_dilation_sizes,
|
602 |
+
upsample_rates,
|
603 |
+
upsample_initial_channel,
|
604 |
+
upsample_kernel_sizes,
|
605 |
+
gin_channels=gin_channels,
|
606 |
+
sr=sr,
|
607 |
+
is_half=kwargs["is_half"],
|
608 |
+
)
|
609 |
+
self.enc_q = PosteriorEncoder(
|
610 |
+
spec_channels,
|
611 |
+
inter_channels,
|
612 |
+
hidden_channels,
|
613 |
+
5,
|
614 |
+
1,
|
615 |
+
16,
|
616 |
+
gin_channels=gin_channels,
|
617 |
+
)
|
618 |
+
self.flow = ResidualCouplingBlock(
|
619 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
620 |
+
)
|
621 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
622 |
+
self.speaker_map = None
|
623 |
+
logger.debug(
|
624 |
+
"gin_channels: "
|
625 |
+
+ gin_channels
|
626 |
+
+ ", self.spk_embed_dim: "
|
627 |
+
+ self.spk_embed_dim
|
628 |
+
)
|
629 |
+
|
630 |
+
def remove_weight_norm(self):
|
631 |
+
self.dec.remove_weight_norm()
|
632 |
+
self.flow.remove_weight_norm()
|
633 |
+
self.enc_q.remove_weight_norm()
|
634 |
+
|
635 |
+
def construct_spkmixmap(self, n_speaker):
|
636 |
+
self.speaker_map = torch.zeros((n_speaker, 1, 1, self.gin_channels))
|
637 |
+
for i in range(n_speaker):
|
638 |
+
self.speaker_map[i] = self.emb_g(torch.LongTensor([[i]]))
|
639 |
+
self.speaker_map = self.speaker_map.unsqueeze(0)
|
640 |
+
|
641 |
+
def forward(self, phone, phone_lengths, pitch, nsff0, g, rnd, max_len=None):
|
642 |
+
if self.speaker_map is not None: # [N, S] * [S, B, 1, H]
|
643 |
+
g = g.reshape((g.shape[0], g.shape[1], 1, 1, 1)) # [N, S, B, 1, 1]
|
644 |
+
g = g * self.speaker_map # [N, S, B, 1, H]
|
645 |
+
g = torch.sum(g, dim=1) # [N, 1, B, 1, H]
|
646 |
+
g = g.transpose(0, -1).transpose(0, -2).squeeze(0) # [B, H, N]
|
647 |
+
else:
|
648 |
+
g = g.unsqueeze(0)
|
649 |
+
g = self.emb_g(g).transpose(1, 2)
|
650 |
+
|
651 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
652 |
+
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
653 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
654 |
+
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
655 |
+
return o
|
656 |
+
|
657 |
+
|
658 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
659 |
+
def __init__(self, use_spectral_norm=False):
|
660 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
661 |
+
periods = [2, 3, 5, 7, 11, 17]
|
662 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
663 |
+
|
664 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
665 |
+
discs = discs + [
|
666 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
667 |
+
]
|
668 |
+
self.discriminators = nn.ModuleList(discs)
|
669 |
+
|
670 |
+
def forward(self, y, y_hat):
|
671 |
+
y_d_rs = [] #
|
672 |
+
y_d_gs = []
|
673 |
+
fmap_rs = []
|
674 |
+
fmap_gs = []
|
675 |
+
for i, d in enumerate(self.discriminators):
|
676 |
+
y_d_r, fmap_r = d(y)
|
677 |
+
y_d_g, fmap_g = d(y_hat)
|
678 |
+
# for j in range(len(fmap_r)):
|
679 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
680 |
+
y_d_rs.append(y_d_r)
|
681 |
+
y_d_gs.append(y_d_g)
|
682 |
+
fmap_rs.append(fmap_r)
|
683 |
+
fmap_gs.append(fmap_g)
|
684 |
+
|
685 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
686 |
+
|
687 |
+
|
688 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
689 |
+
def __init__(self, use_spectral_norm=False):
|
690 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
691 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
692 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
693 |
+
|
694 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
695 |
+
discs = discs + [
|
696 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
697 |
+
]
|
698 |
+
self.discriminators = nn.ModuleList(discs)
|
699 |
+
|
700 |
+
def forward(self, y, y_hat):
|
701 |
+
y_d_rs = [] #
|
702 |
+
y_d_gs = []
|
703 |
+
fmap_rs = []
|
704 |
+
fmap_gs = []
|
705 |
+
for i, d in enumerate(self.discriminators):
|
706 |
+
y_d_r, fmap_r = d(y)
|
707 |
+
y_d_g, fmap_g = d(y_hat)
|
708 |
+
# for j in range(len(fmap_r)):
|
709 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
710 |
+
y_d_rs.append(y_d_r)
|
711 |
+
y_d_gs.append(y_d_g)
|
712 |
+
fmap_rs.append(fmap_r)
|
713 |
+
fmap_gs.append(fmap_g)
|
714 |
+
|
715 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
716 |
+
|
717 |
+
|
718 |
+
class DiscriminatorS(torch.nn.Module):
|
719 |
+
def __init__(self, use_spectral_norm=False):
|
720 |
+
super(DiscriminatorS, self).__init__()
|
721 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
722 |
+
self.convs = nn.ModuleList(
|
723 |
+
[
|
724 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
725 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
726 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
727 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
728 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
729 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
730 |
+
]
|
731 |
+
)
|
732 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
733 |
+
|
734 |
+
def forward(self, x):
|
735 |
+
fmap = []
|
736 |
+
|
737 |
+
for l in self.convs:
|
738 |
+
x = l(x)
|
739 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
740 |
+
fmap.append(x)
|
741 |
+
x = self.conv_post(x)
|
742 |
+
fmap.append(x)
|
743 |
+
x = torch.flatten(x, 1, -1)
|
744 |
+
|
745 |
+
return x, fmap
|
746 |
+
|
747 |
+
|
748 |
+
class DiscriminatorP(torch.nn.Module):
|
749 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
750 |
+
super(DiscriminatorP, self).__init__()
|
751 |
+
self.period = period
|
752 |
+
self.use_spectral_norm = use_spectral_norm
|
753 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
754 |
+
self.convs = nn.ModuleList(
|
755 |
+
[
|
756 |
+
norm_f(
|
757 |
+
Conv2d(
|
758 |
+
1,
|
759 |
+
32,
|
760 |
+
(kernel_size, 1),
|
761 |
+
(stride, 1),
|
762 |
+
padding=(get_padding(kernel_size, 1), 0),
|
763 |
+
)
|
764 |
+
),
|
765 |
+
norm_f(
|
766 |
+
Conv2d(
|
767 |
+
32,
|
768 |
+
128,
|
769 |
+
(kernel_size, 1),
|
770 |
+
(stride, 1),
|
771 |
+
padding=(get_padding(kernel_size, 1), 0),
|
772 |
+
)
|
773 |
+
),
|
774 |
+
norm_f(
|
775 |
+
Conv2d(
|
776 |
+
128,
|
777 |
+
512,
|
778 |
+
(kernel_size, 1),
|
779 |
+
(stride, 1),
|
780 |
+
padding=(get_padding(kernel_size, 1), 0),
|
781 |
+
)
|
782 |
+
),
|
783 |
+
norm_f(
|
784 |
+
Conv2d(
|
785 |
+
512,
|
786 |
+
1024,
|
787 |
+
(kernel_size, 1),
|
788 |
+
(stride, 1),
|
789 |
+
padding=(get_padding(kernel_size, 1), 0),
|
790 |
+
)
|
791 |
+
),
|
792 |
+
norm_f(
|
793 |
+
Conv2d(
|
794 |
+
1024,
|
795 |
+
1024,
|
796 |
+
(kernel_size, 1),
|
797 |
+
1,
|
798 |
+
padding=(get_padding(kernel_size, 1), 0),
|
799 |
+
)
|
800 |
+
),
|
801 |
+
]
|
802 |
+
)
|
803 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
804 |
+
|
805 |
+
def forward(self, x):
|
806 |
+
fmap = []
|
807 |
+
|
808 |
+
# 1d to 2d
|
809 |
+
b, c, t = x.shape
|
810 |
+
if t % self.period != 0: # pad first
|
811 |
+
n_pad = self.period - (t % self.period)
|
812 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
813 |
+
t = t + n_pad
|
814 |
+
x = x.view(b, c, t // self.period, self.period)
|
815 |
+
|
816 |
+
for l in self.convs:
|
817 |
+
x = l(x)
|
818 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
819 |
+
fmap.append(x)
|
820 |
+
x = self.conv_post(x)
|
821 |
+
fmap.append(x)
|
822 |
+
x = torch.flatten(x, 1, -1)
|
823 |
+
|
824 |
+
return x, fmap
|
infer/lib/infer_pack/modules.py
ADDED
@@ -0,0 +1,521 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import scipy
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
9 |
+
from torch.nn import functional as F
|
10 |
+
from torch.nn.utils import remove_weight_norm, weight_norm
|
11 |
+
|
12 |
+
from infer.lib.infer_pack import commons
|
13 |
+
from infer.lib.infer_pack.commons import get_padding, init_weights
|
14 |
+
from infer.lib.infer_pack.transforms import piecewise_rational_quadratic_transform
|
15 |
+
|
16 |
+
LRELU_SLOPE = 0.1
|
17 |
+
|
18 |
+
|
19 |
+
class LayerNorm(nn.Module):
|
20 |
+
def __init__(self, channels, eps=1e-5):
|
21 |
+
super().__init__()
|
22 |
+
self.channels = channels
|
23 |
+
self.eps = eps
|
24 |
+
|
25 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
26 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = x.transpose(1, -1)
|
30 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
31 |
+
return x.transpose(1, -1)
|
32 |
+
|
33 |
+
|
34 |
+
class ConvReluNorm(nn.Module):
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
in_channels,
|
38 |
+
hidden_channels,
|
39 |
+
out_channels,
|
40 |
+
kernel_size,
|
41 |
+
n_layers,
|
42 |
+
p_dropout,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.in_channels = in_channels
|
46 |
+
self.hidden_channels = hidden_channels
|
47 |
+
self.out_channels = out_channels
|
48 |
+
self.kernel_size = kernel_size
|
49 |
+
self.n_layers = n_layers
|
50 |
+
self.p_dropout = p_dropout
|
51 |
+
assert n_layers > 1, "Number of layers should be larger than 0."
|
52 |
+
|
53 |
+
self.conv_layers = nn.ModuleList()
|
54 |
+
self.norm_layers = nn.ModuleList()
|
55 |
+
self.conv_layers.append(
|
56 |
+
nn.Conv1d(
|
57 |
+
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
|
58 |
+
)
|
59 |
+
)
|
60 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
61 |
+
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
62 |
+
for _ in range(n_layers - 1):
|
63 |
+
self.conv_layers.append(
|
64 |
+
nn.Conv1d(
|
65 |
+
hidden_channels,
|
66 |
+
hidden_channels,
|
67 |
+
kernel_size,
|
68 |
+
padding=kernel_size // 2,
|
69 |
+
)
|
70 |
+
)
|
71 |
+
self.norm_layers.append(LayerNorm(hidden_channels))
|
72 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
73 |
+
self.proj.weight.data.zero_()
|
74 |
+
self.proj.bias.data.zero_()
|
75 |
+
|
76 |
+
def forward(self, x, x_mask):
|
77 |
+
x_org = x
|
78 |
+
for i in range(self.n_layers):
|
79 |
+
x = self.conv_layers[i](x * x_mask)
|
80 |
+
x = self.norm_layers[i](x)
|
81 |
+
x = self.relu_drop(x)
|
82 |
+
x = x_org + self.proj(x)
|
83 |
+
return x * x_mask
|
84 |
+
|
85 |
+
|
86 |
+
class DDSConv(nn.Module):
|
87 |
+
"""
|
88 |
+
Dialted and Depth-Separable Convolution
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
92 |
+
super().__init__()
|
93 |
+
self.channels = channels
|
94 |
+
self.kernel_size = kernel_size
|
95 |
+
self.n_layers = n_layers
|
96 |
+
self.p_dropout = p_dropout
|
97 |
+
|
98 |
+
self.drop = nn.Dropout(p_dropout)
|
99 |
+
self.convs_sep = nn.ModuleList()
|
100 |
+
self.convs_1x1 = nn.ModuleList()
|
101 |
+
self.norms_1 = nn.ModuleList()
|
102 |
+
self.norms_2 = nn.ModuleList()
|
103 |
+
for i in range(n_layers):
|
104 |
+
dilation = kernel_size**i
|
105 |
+
padding = (kernel_size * dilation - dilation) // 2
|
106 |
+
self.convs_sep.append(
|
107 |
+
nn.Conv1d(
|
108 |
+
channels,
|
109 |
+
channels,
|
110 |
+
kernel_size,
|
111 |
+
groups=channels,
|
112 |
+
dilation=dilation,
|
113 |
+
padding=padding,
|
114 |
+
)
|
115 |
+
)
|
116 |
+
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
117 |
+
self.norms_1.append(LayerNorm(channels))
|
118 |
+
self.norms_2.append(LayerNorm(channels))
|
119 |
+
|
120 |
+
def forward(self, x, x_mask, g=None):
|
121 |
+
if g is not None:
|
122 |
+
x = x + g
|
123 |
+
for i in range(self.n_layers):
|
124 |
+
y = self.convs_sep[i](x * x_mask)
|
125 |
+
y = self.norms_1[i](y)
|
126 |
+
y = F.gelu(y)
|
127 |
+
y = self.convs_1x1[i](y)
|
128 |
+
y = self.norms_2[i](y)
|
129 |
+
y = F.gelu(y)
|
130 |
+
y = self.drop(y)
|
131 |
+
x = x + y
|
132 |
+
return x * x_mask
|
133 |
+
|
134 |
+
|
135 |
+
class WN(torch.nn.Module):
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
hidden_channels,
|
139 |
+
kernel_size,
|
140 |
+
dilation_rate,
|
141 |
+
n_layers,
|
142 |
+
gin_channels=0,
|
143 |
+
p_dropout=0,
|
144 |
+
):
|
145 |
+
super(WN, self).__init__()
|
146 |
+
assert kernel_size % 2 == 1
|
147 |
+
self.hidden_channels = hidden_channels
|
148 |
+
self.kernel_size = (kernel_size,)
|
149 |
+
self.dilation_rate = dilation_rate
|
150 |
+
self.n_layers = n_layers
|
151 |
+
self.gin_channels = gin_channels
|
152 |
+
self.p_dropout = p_dropout
|
153 |
+
|
154 |
+
self.in_layers = torch.nn.ModuleList()
|
155 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
156 |
+
self.drop = nn.Dropout(p_dropout)
|
157 |
+
|
158 |
+
if gin_channels != 0:
|
159 |
+
cond_layer = torch.nn.Conv1d(
|
160 |
+
gin_channels, 2 * hidden_channels * n_layers, 1
|
161 |
+
)
|
162 |
+
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
163 |
+
|
164 |
+
for i in range(n_layers):
|
165 |
+
dilation = dilation_rate**i
|
166 |
+
padding = int((kernel_size * dilation - dilation) / 2)
|
167 |
+
in_layer = torch.nn.Conv1d(
|
168 |
+
hidden_channels,
|
169 |
+
2 * hidden_channels,
|
170 |
+
kernel_size,
|
171 |
+
dilation=dilation,
|
172 |
+
padding=padding,
|
173 |
+
)
|
174 |
+
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
175 |
+
self.in_layers.append(in_layer)
|
176 |
+
|
177 |
+
# last one is not necessary
|
178 |
+
if i < n_layers - 1:
|
179 |
+
res_skip_channels = 2 * hidden_channels
|
180 |
+
else:
|
181 |
+
res_skip_channels = hidden_channels
|
182 |
+
|
183 |
+
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
184 |
+
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
185 |
+
self.res_skip_layers.append(res_skip_layer)
|
186 |
+
|
187 |
+
def forward(self, x, x_mask, g=None, **kwargs):
|
188 |
+
output = torch.zeros_like(x)
|
189 |
+
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
190 |
+
|
191 |
+
if g is not None:
|
192 |
+
g = self.cond_layer(g)
|
193 |
+
|
194 |
+
for i in range(self.n_layers):
|
195 |
+
x_in = self.in_layers[i](x)
|
196 |
+
if g is not None:
|
197 |
+
cond_offset = i * 2 * self.hidden_channels
|
198 |
+
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
199 |
+
else:
|
200 |
+
g_l = torch.zeros_like(x_in)
|
201 |
+
|
202 |
+
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
203 |
+
acts = self.drop(acts)
|
204 |
+
|
205 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
206 |
+
if i < self.n_layers - 1:
|
207 |
+
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
208 |
+
x = (x + res_acts) * x_mask
|
209 |
+
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
210 |
+
else:
|
211 |
+
output = output + res_skip_acts
|
212 |
+
return output * x_mask
|
213 |
+
|
214 |
+
def remove_weight_norm(self):
|
215 |
+
if self.gin_channels != 0:
|
216 |
+
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
217 |
+
for l in self.in_layers:
|
218 |
+
torch.nn.utils.remove_weight_norm(l)
|
219 |
+
for l in self.res_skip_layers:
|
220 |
+
torch.nn.utils.remove_weight_norm(l)
|
221 |
+
|
222 |
+
|
223 |
+
class ResBlock1(torch.nn.Module):
|
224 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
225 |
+
super(ResBlock1, self).__init__()
|
226 |
+
self.convs1 = nn.ModuleList(
|
227 |
+
[
|
228 |
+
weight_norm(
|
229 |
+
Conv1d(
|
230 |
+
channels,
|
231 |
+
channels,
|
232 |
+
kernel_size,
|
233 |
+
1,
|
234 |
+
dilation=dilation[0],
|
235 |
+
padding=get_padding(kernel_size, dilation[0]),
|
236 |
+
)
|
237 |
+
),
|
238 |
+
weight_norm(
|
239 |
+
Conv1d(
|
240 |
+
channels,
|
241 |
+
channels,
|
242 |
+
kernel_size,
|
243 |
+
1,
|
244 |
+
dilation=dilation[1],
|
245 |
+
padding=get_padding(kernel_size, dilation[1]),
|
246 |
+
)
|
247 |
+
),
|
248 |
+
weight_norm(
|
249 |
+
Conv1d(
|
250 |
+
channels,
|
251 |
+
channels,
|
252 |
+
kernel_size,
|
253 |
+
1,
|
254 |
+
dilation=dilation[2],
|
255 |
+
padding=get_padding(kernel_size, dilation[2]),
|
256 |
+
)
|
257 |
+
),
|
258 |
+
]
|
259 |
+
)
|
260 |
+
self.convs1.apply(init_weights)
|
261 |
+
|
262 |
+
self.convs2 = nn.ModuleList(
|
263 |
+
[
|
264 |
+
weight_norm(
|
265 |
+
Conv1d(
|
266 |
+
channels,
|
267 |
+
channels,
|
268 |
+
kernel_size,
|
269 |
+
1,
|
270 |
+
dilation=1,
|
271 |
+
padding=get_padding(kernel_size, 1),
|
272 |
+
)
|
273 |
+
),
|
274 |
+
weight_norm(
|
275 |
+
Conv1d(
|
276 |
+
channels,
|
277 |
+
channels,
|
278 |
+
kernel_size,
|
279 |
+
1,
|
280 |
+
dilation=1,
|
281 |
+
padding=get_padding(kernel_size, 1),
|
282 |
+
)
|
283 |
+
),
|
284 |
+
weight_norm(
|
285 |
+
Conv1d(
|
286 |
+
channels,
|
287 |
+
channels,
|
288 |
+
kernel_size,
|
289 |
+
1,
|
290 |
+
dilation=1,
|
291 |
+
padding=get_padding(kernel_size, 1),
|
292 |
+
)
|
293 |
+
),
|
294 |
+
]
|
295 |
+
)
|
296 |
+
self.convs2.apply(init_weights)
|
297 |
+
|
298 |
+
def forward(self, x, x_mask=None):
|
299 |
+
for c1, c2 in zip(self.convs1, self.convs2):
|
300 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
301 |
+
if x_mask is not None:
|
302 |
+
xt = xt * x_mask
|
303 |
+
xt = c1(xt)
|
304 |
+
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
305 |
+
if x_mask is not None:
|
306 |
+
xt = xt * x_mask
|
307 |
+
xt = c2(xt)
|
308 |
+
x = xt + x
|
309 |
+
if x_mask is not None:
|
310 |
+
x = x * x_mask
|
311 |
+
return x
|
312 |
+
|
313 |
+
def remove_weight_norm(self):
|
314 |
+
for l in self.convs1:
|
315 |
+
remove_weight_norm(l)
|
316 |
+
for l in self.convs2:
|
317 |
+
remove_weight_norm(l)
|
318 |
+
|
319 |
+
|
320 |
+
class ResBlock2(torch.nn.Module):
|
321 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
322 |
+
super(ResBlock2, self).__init__()
|
323 |
+
self.convs = nn.ModuleList(
|
324 |
+
[
|
325 |
+
weight_norm(
|
326 |
+
Conv1d(
|
327 |
+
channels,
|
328 |
+
channels,
|
329 |
+
kernel_size,
|
330 |
+
1,
|
331 |
+
dilation=dilation[0],
|
332 |
+
padding=get_padding(kernel_size, dilation[0]),
|
333 |
+
)
|
334 |
+
),
|
335 |
+
weight_norm(
|
336 |
+
Conv1d(
|
337 |
+
channels,
|
338 |
+
channels,
|
339 |
+
kernel_size,
|
340 |
+
1,
|
341 |
+
dilation=dilation[1],
|
342 |
+
padding=get_padding(kernel_size, dilation[1]),
|
343 |
+
)
|
344 |
+
),
|
345 |
+
]
|
346 |
+
)
|
347 |
+
self.convs.apply(init_weights)
|
348 |
+
|
349 |
+
def forward(self, x, x_mask=None):
|
350 |
+
for c in self.convs:
|
351 |
+
xt = F.leaky_relu(x, LRELU_SLOPE)
|
352 |
+
if x_mask is not None:
|
353 |
+
xt = xt * x_mask
|
354 |
+
xt = c(xt)
|
355 |
+
x = xt + x
|
356 |
+
if x_mask is not None:
|
357 |
+
x = x * x_mask
|
358 |
+
return x
|
359 |
+
|
360 |
+
def remove_weight_norm(self):
|
361 |
+
for l in self.convs:
|
362 |
+
remove_weight_norm(l)
|
363 |
+
|
364 |
+
|
365 |
+
class Log(nn.Module):
|
366 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
367 |
+
if not reverse:
|
368 |
+
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
369 |
+
logdet = torch.sum(-y, [1, 2])
|
370 |
+
return y, logdet
|
371 |
+
else:
|
372 |
+
x = torch.exp(x) * x_mask
|
373 |
+
return x
|
374 |
+
|
375 |
+
|
376 |
+
class Flip(nn.Module):
|
377 |
+
def forward(self, x, *args, reverse=False, **kwargs):
|
378 |
+
x = torch.flip(x, [1])
|
379 |
+
if not reverse:
|
380 |
+
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
381 |
+
return x, logdet
|
382 |
+
else:
|
383 |
+
return x
|
384 |
+
|
385 |
+
|
386 |
+
class ElementwiseAffine(nn.Module):
|
387 |
+
def __init__(self, channels):
|
388 |
+
super().__init__()
|
389 |
+
self.channels = channels
|
390 |
+
self.m = nn.Parameter(torch.zeros(channels, 1))
|
391 |
+
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
392 |
+
|
393 |
+
def forward(self, x, x_mask, reverse=False, **kwargs):
|
394 |
+
if not reverse:
|
395 |
+
y = self.m + torch.exp(self.logs) * x
|
396 |
+
y = y * x_mask
|
397 |
+
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
398 |
+
return y, logdet
|
399 |
+
else:
|
400 |
+
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
401 |
+
return x
|
402 |
+
|
403 |
+
|
404 |
+
class ResidualCouplingLayer(nn.Module):
|
405 |
+
def __init__(
|
406 |
+
self,
|
407 |
+
channels,
|
408 |
+
hidden_channels,
|
409 |
+
kernel_size,
|
410 |
+
dilation_rate,
|
411 |
+
n_layers,
|
412 |
+
p_dropout=0,
|
413 |
+
gin_channels=0,
|
414 |
+
mean_only=False,
|
415 |
+
):
|
416 |
+
assert channels % 2 == 0, "channels should be divisible by 2"
|
417 |
+
super().__init__()
|
418 |
+
self.channels = channels
|
419 |
+
self.hidden_channels = hidden_channels
|
420 |
+
self.kernel_size = kernel_size
|
421 |
+
self.dilation_rate = dilation_rate
|
422 |
+
self.n_layers = n_layers
|
423 |
+
self.half_channels = channels // 2
|
424 |
+
self.mean_only = mean_only
|
425 |
+
|
426 |
+
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
427 |
+
self.enc = WN(
|
428 |
+
hidden_channels,
|
429 |
+
kernel_size,
|
430 |
+
dilation_rate,
|
431 |
+
n_layers,
|
432 |
+
p_dropout=p_dropout,
|
433 |
+
gin_channels=gin_channels,
|
434 |
+
)
|
435 |
+
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
436 |
+
self.post.weight.data.zero_()
|
437 |
+
self.post.bias.data.zero_()
|
438 |
+
|
439 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
440 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
441 |
+
h = self.pre(x0) * x_mask
|
442 |
+
h = self.enc(h, x_mask, g=g)
|
443 |
+
stats = self.post(h) * x_mask
|
444 |
+
if not self.mean_only:
|
445 |
+
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
446 |
+
else:
|
447 |
+
m = stats
|
448 |
+
logs = torch.zeros_like(m)
|
449 |
+
|
450 |
+
if not reverse:
|
451 |
+
x1 = m + x1 * torch.exp(logs) * x_mask
|
452 |
+
x = torch.cat([x0, x1], 1)
|
453 |
+
logdet = torch.sum(logs, [1, 2])
|
454 |
+
return x, logdet
|
455 |
+
else:
|
456 |
+
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
457 |
+
x = torch.cat([x0, x1], 1)
|
458 |
+
return x
|
459 |
+
|
460 |
+
def remove_weight_norm(self):
|
461 |
+
self.enc.remove_weight_norm()
|
462 |
+
|
463 |
+
|
464 |
+
class ConvFlow(nn.Module):
|
465 |
+
def __init__(
|
466 |
+
self,
|
467 |
+
in_channels,
|
468 |
+
filter_channels,
|
469 |
+
kernel_size,
|
470 |
+
n_layers,
|
471 |
+
num_bins=10,
|
472 |
+
tail_bound=5.0,
|
473 |
+
):
|
474 |
+
super().__init__()
|
475 |
+
self.in_channels = in_channels
|
476 |
+
self.filter_channels = filter_channels
|
477 |
+
self.kernel_size = kernel_size
|
478 |
+
self.n_layers = n_layers
|
479 |
+
self.num_bins = num_bins
|
480 |
+
self.tail_bound = tail_bound
|
481 |
+
self.half_channels = in_channels // 2
|
482 |
+
|
483 |
+
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
484 |
+
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
485 |
+
self.proj = nn.Conv1d(
|
486 |
+
filter_channels, self.half_channels * (num_bins * 3 - 1), 1
|
487 |
+
)
|
488 |
+
self.proj.weight.data.zero_()
|
489 |
+
self.proj.bias.data.zero_()
|
490 |
+
|
491 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
492 |
+
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
493 |
+
h = self.pre(x0)
|
494 |
+
h = self.convs(h, x_mask, g=g)
|
495 |
+
h = self.proj(h) * x_mask
|
496 |
+
|
497 |
+
b, c, t = x0.shape
|
498 |
+
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
499 |
+
|
500 |
+
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
501 |
+
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
|
502 |
+
self.filter_channels
|
503 |
+
)
|
504 |
+
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
505 |
+
|
506 |
+
x1, logabsdet = piecewise_rational_quadratic_transform(
|
507 |
+
x1,
|
508 |
+
unnormalized_widths,
|
509 |
+
unnormalized_heights,
|
510 |
+
unnormalized_derivatives,
|
511 |
+
inverse=reverse,
|
512 |
+
tails="linear",
|
513 |
+
tail_bound=self.tail_bound,
|
514 |
+
)
|
515 |
+
|
516 |
+
x = torch.cat([x0, x1], 1) * x_mask
|
517 |
+
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
518 |
+
if not reverse:
|
519 |
+
return x, logdet
|
520 |
+
else:
|
521 |
+
return x
|
infer/lib/infer_pack/modules/F0Predictor/DioF0Predictor.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pyworld
|
3 |
+
|
4 |
+
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
5 |
+
|
6 |
+
|
7 |
+
class DioF0Predictor(F0Predictor):
|
8 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
9 |
+
self.hop_length = hop_length
|
10 |
+
self.f0_min = f0_min
|
11 |
+
self.f0_max = f0_max
|
12 |
+
self.sampling_rate = sampling_rate
|
13 |
+
|
14 |
+
def interpolate_f0(self, f0):
|
15 |
+
"""
|
16 |
+
对F0进行插值处理
|
17 |
+
"""
|
18 |
+
|
19 |
+
data = np.reshape(f0, (f0.size, 1))
|
20 |
+
|
21 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
22 |
+
vuv_vector[data > 0.0] = 1.0
|
23 |
+
vuv_vector[data <= 0.0] = 0.0
|
24 |
+
|
25 |
+
ip_data = data
|
26 |
+
|
27 |
+
frame_number = data.size
|
28 |
+
last_value = 0.0
|
29 |
+
for i in range(frame_number):
|
30 |
+
if data[i] <= 0.0:
|
31 |
+
j = i + 1
|
32 |
+
for j in range(i + 1, frame_number):
|
33 |
+
if data[j] > 0.0:
|
34 |
+
break
|
35 |
+
if j < frame_number - 1:
|
36 |
+
if last_value > 0.0:
|
37 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
38 |
+
for k in range(i, j):
|
39 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
40 |
+
else:
|
41 |
+
for k in range(i, j):
|
42 |
+
ip_data[k] = data[j]
|
43 |
+
else:
|
44 |
+
for k in range(i, frame_number):
|
45 |
+
ip_data[k] = last_value
|
46 |
+
else:
|
47 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
48 |
+
last_value = data[i]
|
49 |
+
|
50 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
51 |
+
|
52 |
+
def resize_f0(self, x, target_len):
|
53 |
+
source = np.array(x)
|
54 |
+
source[source < 0.001] = np.nan
|
55 |
+
target = np.interp(
|
56 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
57 |
+
np.arange(0, len(source)),
|
58 |
+
source,
|
59 |
+
)
|
60 |
+
res = np.nan_to_num(target)
|
61 |
+
return res
|
62 |
+
|
63 |
+
def compute_f0(self, wav, p_len=None):
|
64 |
+
if p_len is None:
|
65 |
+
p_len = wav.shape[0] // self.hop_length
|
66 |
+
f0, t = pyworld.dio(
|
67 |
+
wav.astype(np.double),
|
68 |
+
fs=self.sampling_rate,
|
69 |
+
f0_floor=self.f0_min,
|
70 |
+
f0_ceil=self.f0_max,
|
71 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
72 |
+
)
|
73 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
74 |
+
for index, pitch in enumerate(f0):
|
75 |
+
f0[index] = round(pitch, 1)
|
76 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
77 |
+
|
78 |
+
def compute_f0_uv(self, wav, p_len=None):
|
79 |
+
if p_len is None:
|
80 |
+
p_len = wav.shape[0] // self.hop_length
|
81 |
+
f0, t = pyworld.dio(
|
82 |
+
wav.astype(np.double),
|
83 |
+
fs=self.sampling_rate,
|
84 |
+
f0_floor=self.f0_min,
|
85 |
+
f0_ceil=self.f0_max,
|
86 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
87 |
+
)
|
88 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
89 |
+
for index, pitch in enumerate(f0):
|
90 |
+
f0[index] = round(pitch, 1)
|
91 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer/lib/infer_pack/modules/F0Predictor/F0Predictor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class F0Predictor(object):
|
2 |
+
def compute_f0(self, wav, p_len):
|
3 |
+
"""
|
4 |
+
input: wav:[signal_length]
|
5 |
+
p_len:int
|
6 |
+
output: f0:[signal_length//hop_length]
|
7 |
+
"""
|
8 |
+
pass
|
9 |
+
|
10 |
+
def compute_f0_uv(self, wav, p_len):
|
11 |
+
"""
|
12 |
+
input: wav:[signal_length]
|
13 |
+
p_len:int
|
14 |
+
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
15 |
+
"""
|
16 |
+
pass
|
infer/lib/infer_pack/modules/F0Predictor/HarvestF0Predictor.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pyworld
|
3 |
+
|
4 |
+
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
5 |
+
|
6 |
+
|
7 |
+
class HarvestF0Predictor(F0Predictor):
|
8 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
9 |
+
self.hop_length = hop_length
|
10 |
+
self.f0_min = f0_min
|
11 |
+
self.f0_max = f0_max
|
12 |
+
self.sampling_rate = sampling_rate
|
13 |
+
|
14 |
+
def interpolate_f0(self, f0):
|
15 |
+
"""
|
16 |
+
对F0进行插值处理
|
17 |
+
"""
|
18 |
+
|
19 |
+
data = np.reshape(f0, (f0.size, 1))
|
20 |
+
|
21 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
22 |
+
vuv_vector[data > 0.0] = 1.0
|
23 |
+
vuv_vector[data <= 0.0] = 0.0
|
24 |
+
|
25 |
+
ip_data = data
|
26 |
+
|
27 |
+
frame_number = data.size
|
28 |
+
last_value = 0.0
|
29 |
+
for i in range(frame_number):
|
30 |
+
if data[i] <= 0.0:
|
31 |
+
j = i + 1
|
32 |
+
for j in range(i + 1, frame_number):
|
33 |
+
if data[j] > 0.0:
|
34 |
+
break
|
35 |
+
if j < frame_number - 1:
|
36 |
+
if last_value > 0.0:
|
37 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
38 |
+
for k in range(i, j):
|
39 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
40 |
+
else:
|
41 |
+
for k in range(i, j):
|
42 |
+
ip_data[k] = data[j]
|
43 |
+
else:
|
44 |
+
for k in range(i, frame_number):
|
45 |
+
ip_data[k] = last_value
|
46 |
+
else:
|
47 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
48 |
+
last_value = data[i]
|
49 |
+
|
50 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
51 |
+
|
52 |
+
def resize_f0(self, x, target_len):
|
53 |
+
source = np.array(x)
|
54 |
+
source[source < 0.001] = np.nan
|
55 |
+
target = np.interp(
|
56 |
+
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
57 |
+
np.arange(0, len(source)),
|
58 |
+
source,
|
59 |
+
)
|
60 |
+
res = np.nan_to_num(target)
|
61 |
+
return res
|
62 |
+
|
63 |
+
def compute_f0(self, wav, p_len=None):
|
64 |
+
if p_len is None:
|
65 |
+
p_len = wav.shape[0] // self.hop_length
|
66 |
+
f0, t = pyworld.harvest(
|
67 |
+
wav.astype(np.double),
|
68 |
+
fs=self.hop_length,
|
69 |
+
f0_ceil=self.f0_max,
|
70 |
+
f0_floor=self.f0_min,
|
71 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
72 |
+
)
|
73 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
74 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
75 |
+
|
76 |
+
def compute_f0_uv(self, wav, p_len=None):
|
77 |
+
if p_len is None:
|
78 |
+
p_len = wav.shape[0] // self.hop_length
|
79 |
+
f0, t = pyworld.harvest(
|
80 |
+
wav.astype(np.double),
|
81 |
+
fs=self.sampling_rate,
|
82 |
+
f0_floor=self.f0_min,
|
83 |
+
f0_ceil=self.f0_max,
|
84 |
+
frame_period=1000 * self.hop_length / self.sampling_rate,
|
85 |
+
)
|
86 |
+
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.sampling_rate)
|
87 |
+
return self.interpolate_f0(self.resize_f0(f0, p_len))
|
infer/lib/infer_pack/modules/F0Predictor/PMF0Predictor.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import parselmouth
|
3 |
+
|
4 |
+
from infer.lib.infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
5 |
+
|
6 |
+
|
7 |
+
class PMF0Predictor(F0Predictor):
|
8 |
+
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
9 |
+
self.hop_length = hop_length
|
10 |
+
self.f0_min = f0_min
|
11 |
+
self.f0_max = f0_max
|
12 |
+
self.sampling_rate = sampling_rate
|
13 |
+
|
14 |
+
def interpolate_f0(self, f0):
|
15 |
+
"""
|
16 |
+
对F0进行插值处理
|
17 |
+
"""
|
18 |
+
|
19 |
+
data = np.reshape(f0, (f0.size, 1))
|
20 |
+
|
21 |
+
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
|
22 |
+
vuv_vector[data > 0.0] = 1.0
|
23 |
+
vuv_vector[data <= 0.0] = 0.0
|
24 |
+
|
25 |
+
ip_data = data
|
26 |
+
|
27 |
+
frame_number = data.size
|
28 |
+
last_value = 0.0
|
29 |
+
for i in range(frame_number):
|
30 |
+
if data[i] <= 0.0:
|
31 |
+
j = i + 1
|
32 |
+
for j in range(i + 1, frame_number):
|
33 |
+
if data[j] > 0.0:
|
34 |
+
break
|
35 |
+
if j < frame_number - 1:
|
36 |
+
if last_value > 0.0:
|
37 |
+
step = (data[j] - data[i - 1]) / float(j - i)
|
38 |
+
for k in range(i, j):
|
39 |
+
ip_data[k] = data[i - 1] + step * (k - i + 1)
|
40 |
+
else:
|
41 |
+
for k in range(i, j):
|
42 |
+
ip_data[k] = data[j]
|
43 |
+
else:
|
44 |
+
for k in range(i, frame_number):
|
45 |
+
ip_data[k] = last_value
|
46 |
+
else:
|
47 |
+
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
48 |
+
last_value = data[i]
|
49 |
+
|
50 |
+
return ip_data[:, 0], vuv_vector[:, 0]
|
51 |
+
|
52 |
+
def compute_f0(self, wav, p_len=None):
|
53 |
+
x = wav
|
54 |
+
if p_len is None:
|
55 |
+
p_len = x.shape[0] // self.hop_length
|
56 |
+
else:
|
57 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
58 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
59 |
+
f0 = (
|
60 |
+
parselmouth.Sound(x, self.sampling_rate)
|
61 |
+
.to_pitch_ac(
|
62 |
+
time_step=time_step / 1000,
|
63 |
+
voicing_threshold=0.6,
|
64 |
+
pitch_floor=self.f0_min,
|
65 |
+
pitch_ceiling=self.f0_max,
|
66 |
+
)
|
67 |
+
.selected_array["frequency"]
|
68 |
+
)
|
69 |
+
|
70 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
71 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
72 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
73 |
+
f0, uv = self.interpolate_f0(f0)
|
74 |
+
return f0
|
75 |
+
|
76 |
+
def compute_f0_uv(self, wav, p_len=None):
|
77 |
+
x = wav
|
78 |
+
if p_len is None:
|
79 |
+
p_len = x.shape[0] // self.hop_length
|
80 |
+
else:
|
81 |
+
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
82 |
+
time_step = self.hop_length / self.sampling_rate * 1000
|
83 |
+
f0 = (
|
84 |
+
parselmouth.Sound(x, self.sampling_rate)
|
85 |
+
.to_pitch_ac(
|
86 |
+
time_step=time_step / 1000,
|
87 |
+
voicing_threshold=0.6,
|
88 |
+
pitch_floor=self.f0_min,
|
89 |
+
pitch_ceiling=self.f0_max,
|
90 |
+
)
|
91 |
+
.selected_array["frequency"]
|
92 |
+
)
|
93 |
+
|
94 |
+
pad_size = (p_len - len(f0) + 1) // 2
|
95 |
+
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
96 |
+
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
97 |
+
f0, uv = self.interpolate_f0(f0)
|
98 |
+
return f0, uv
|
infer/lib/infer_pack/modules/F0Predictor/__init__.py
ADDED
File without changes
|
infer/lib/infer_pack/onnx_inference.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import numpy as np
|
3 |
+
import onnxruntime
|
4 |
+
import soundfile
|
5 |
+
|
6 |
+
import logging
|
7 |
+
|
8 |
+
logger = logging.getLogger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class ContentVec:
|
12 |
+
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
13 |
+
logger.info("Load model(s) from {}".format(vec_path))
|
14 |
+
if device == "cpu" or device is None:
|
15 |
+
providers = ["CPUExecutionProvider"]
|
16 |
+
elif device == "cuda":
|
17 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
18 |
+
elif device == "dml":
|
19 |
+
providers = ["DmlExecutionProvider"]
|
20 |
+
else:
|
21 |
+
raise RuntimeError("Unsportted Device")
|
22 |
+
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
23 |
+
|
24 |
+
def __call__(self, wav):
|
25 |
+
return self.forward(wav)
|
26 |
+
|
27 |
+
def forward(self, wav):
|
28 |
+
feats = wav
|
29 |
+
if feats.ndim == 2: # double channels
|
30 |
+
feats = feats.mean(-1)
|
31 |
+
assert feats.ndim == 1, feats.ndim
|
32 |
+
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
33 |
+
onnx_input = {self.model.get_inputs()[0].name: feats}
|
34 |
+
logits = self.model.run(None, onnx_input)[0]
|
35 |
+
return logits.transpose(0, 2, 1)
|
36 |
+
|
37 |
+
|
38 |
+
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
39 |
+
if f0_predictor == "pm":
|
40 |
+
from lib.infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
41 |
+
|
42 |
+
f0_predictor_object = PMF0Predictor(
|
43 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
44 |
+
)
|
45 |
+
elif f0_predictor == "harvest":
|
46 |
+
from lib.infer_pack.modules.F0Predictor.HarvestF0Predictor import (
|
47 |
+
HarvestF0Predictor,
|
48 |
+
)
|
49 |
+
|
50 |
+
f0_predictor_object = HarvestF0Predictor(
|
51 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
52 |
+
)
|
53 |
+
elif f0_predictor == "dio":
|
54 |
+
from lib.infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
55 |
+
|
56 |
+
f0_predictor_object = DioF0Predictor(
|
57 |
+
hop_length=hop_length, sampling_rate=sampling_rate
|
58 |
+
)
|
59 |
+
else:
|
60 |
+
raise Exception("Unknown f0 predictor")
|
61 |
+
return f0_predictor_object
|
62 |
+
|
63 |
+
|
64 |
+
class OnnxRVC:
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
model_path,
|
68 |
+
sr=40000,
|
69 |
+
hop_size=512,
|
70 |
+
vec_path="vec-768-layer-12",
|
71 |
+
device="cpu",
|
72 |
+
):
|
73 |
+
vec_path = f"pretrained/{vec_path}.onnx"
|
74 |
+
self.vec_model = ContentVec(vec_path, device)
|
75 |
+
if device == "cpu" or device is None:
|
76 |
+
providers = ["CPUExecutionProvider"]
|
77 |
+
elif device == "cuda":
|
78 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
79 |
+
elif device == "dml":
|
80 |
+
providers = ["DmlExecutionProvider"]
|
81 |
+
else:
|
82 |
+
raise RuntimeError("Unsportted Device")
|
83 |
+
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
84 |
+
self.sampling_rate = sr
|
85 |
+
self.hop_size = hop_size
|
86 |
+
|
87 |
+
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
88 |
+
onnx_input = {
|
89 |
+
self.model.get_inputs()[0].name: hubert,
|
90 |
+
self.model.get_inputs()[1].name: hubert_length,
|
91 |
+
self.model.get_inputs()[2].name: pitch,
|
92 |
+
self.model.get_inputs()[3].name: pitchf,
|
93 |
+
self.model.get_inputs()[4].name: ds,
|
94 |
+
self.model.get_inputs()[5].name: rnd,
|
95 |
+
}
|
96 |
+
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
97 |
+
|
98 |
+
def inference(
|
99 |
+
self,
|
100 |
+
raw_path,
|
101 |
+
sid,
|
102 |
+
f0_method="dio",
|
103 |
+
f0_up_key=0,
|
104 |
+
pad_time=0.5,
|
105 |
+
cr_threshold=0.02,
|
106 |
+
):
|
107 |
+
f0_min = 50
|
108 |
+
f0_max = 1100
|
109 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
110 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
111 |
+
f0_predictor = get_f0_predictor(
|
112 |
+
f0_method,
|
113 |
+
hop_length=self.hop_size,
|
114 |
+
sampling_rate=self.sampling_rate,
|
115 |
+
threshold=cr_threshold,
|
116 |
+
)
|
117 |
+
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
118 |
+
org_length = len(wav)
|
119 |
+
if org_length / sr > 50.0:
|
120 |
+
raise RuntimeError("Reached Max Length")
|
121 |
+
|
122 |
+
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
123 |
+
wav16k = wav16k
|
124 |
+
|
125 |
+
hubert = self.vec_model(wav16k)
|
126 |
+
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
127 |
+
hubert_length = hubert.shape[1]
|
128 |
+
|
129 |
+
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
130 |
+
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
131 |
+
pitch = pitchf.copy()
|
132 |
+
f0_mel = 1127 * np.log(1 + pitch / 700)
|
133 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
134 |
+
f0_mel_max - f0_mel_min
|
135 |
+
) + 1
|
136 |
+
f0_mel[f0_mel <= 1] = 1
|
137 |
+
f0_mel[f0_mel > 255] = 255
|
138 |
+
pitch = np.rint(f0_mel).astype(np.int64)
|
139 |
+
|
140 |
+
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
141 |
+
pitch = pitch.reshape(1, len(pitch))
|
142 |
+
ds = np.array([sid]).astype(np.int64)
|
143 |
+
|
144 |
+
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
145 |
+
hubert_length = np.array([hubert_length]).astype(np.int64)
|
146 |
+
|
147 |
+
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
148 |
+
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
|
149 |
+
return out_wav[0:org_length]
|
infer/lib/infer_pack/transforms.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
6 |
+
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
7 |
+
DEFAULT_MIN_DERIVATIVE = 1e-3
|
8 |
+
|
9 |
+
|
10 |
+
def piecewise_rational_quadratic_transform(
|
11 |
+
inputs,
|
12 |
+
unnormalized_widths,
|
13 |
+
unnormalized_heights,
|
14 |
+
unnormalized_derivatives,
|
15 |
+
inverse=False,
|
16 |
+
tails=None,
|
17 |
+
tail_bound=1.0,
|
18 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
19 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
20 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
21 |
+
):
|
22 |
+
if tails is None:
|
23 |
+
spline_fn = rational_quadratic_spline
|
24 |
+
spline_kwargs = {}
|
25 |
+
else:
|
26 |
+
spline_fn = unconstrained_rational_quadratic_spline
|
27 |
+
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
28 |
+
|
29 |
+
outputs, logabsdet = spline_fn(
|
30 |
+
inputs=inputs,
|
31 |
+
unnormalized_widths=unnormalized_widths,
|
32 |
+
unnormalized_heights=unnormalized_heights,
|
33 |
+
unnormalized_derivatives=unnormalized_derivatives,
|
34 |
+
inverse=inverse,
|
35 |
+
min_bin_width=min_bin_width,
|
36 |
+
min_bin_height=min_bin_height,
|
37 |
+
min_derivative=min_derivative,
|
38 |
+
**spline_kwargs
|
39 |
+
)
|
40 |
+
return outputs, logabsdet
|
41 |
+
|
42 |
+
|
43 |
+
def searchsorted(bin_locations, inputs, eps=1e-6):
|
44 |
+
bin_locations[..., -1] += eps
|
45 |
+
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
46 |
+
|
47 |
+
|
48 |
+
def unconstrained_rational_quadratic_spline(
|
49 |
+
inputs,
|
50 |
+
unnormalized_widths,
|
51 |
+
unnormalized_heights,
|
52 |
+
unnormalized_derivatives,
|
53 |
+
inverse=False,
|
54 |
+
tails="linear",
|
55 |
+
tail_bound=1.0,
|
56 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
57 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
58 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
59 |
+
):
|
60 |
+
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
61 |
+
outside_interval_mask = ~inside_interval_mask
|
62 |
+
|
63 |
+
outputs = torch.zeros_like(inputs)
|
64 |
+
logabsdet = torch.zeros_like(inputs)
|
65 |
+
|
66 |
+
if tails == "linear":
|
67 |
+
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
68 |
+
constant = np.log(np.exp(1 - min_derivative) - 1)
|
69 |
+
unnormalized_derivatives[..., 0] = constant
|
70 |
+
unnormalized_derivatives[..., -1] = constant
|
71 |
+
|
72 |
+
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
73 |
+
logabsdet[outside_interval_mask] = 0
|
74 |
+
else:
|
75 |
+
raise RuntimeError("{} tails are not implemented.".format(tails))
|
76 |
+
|
77 |
+
(
|
78 |
+
outputs[inside_interval_mask],
|
79 |
+
logabsdet[inside_interval_mask],
|
80 |
+
) = rational_quadratic_spline(
|
81 |
+
inputs=inputs[inside_interval_mask],
|
82 |
+
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
83 |
+
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
84 |
+
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
85 |
+
inverse=inverse,
|
86 |
+
left=-tail_bound,
|
87 |
+
right=tail_bound,
|
88 |
+
bottom=-tail_bound,
|
89 |
+
top=tail_bound,
|
90 |
+
min_bin_width=min_bin_width,
|
91 |
+
min_bin_height=min_bin_height,
|
92 |
+
min_derivative=min_derivative,
|
93 |
+
)
|
94 |
+
|
95 |
+
return outputs, logabsdet
|
96 |
+
|
97 |
+
|
98 |
+
def rational_quadratic_spline(
|
99 |
+
inputs,
|
100 |
+
unnormalized_widths,
|
101 |
+
unnormalized_heights,
|
102 |
+
unnormalized_derivatives,
|
103 |
+
inverse=False,
|
104 |
+
left=0.0,
|
105 |
+
right=1.0,
|
106 |
+
bottom=0.0,
|
107 |
+
top=1.0,
|
108 |
+
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
109 |
+
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
110 |
+
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
111 |
+
):
|
112 |
+
if torch.min(inputs) < left or torch.max(inputs) > right:
|
113 |
+
raise ValueError("Input to a transform is not within its domain")
|
114 |
+
|
115 |
+
num_bins = unnormalized_widths.shape[-1]
|
116 |
+
|
117 |
+
if min_bin_width * num_bins > 1.0:
|
118 |
+
raise ValueError("Minimal bin width too large for the number of bins")
|
119 |
+
if min_bin_height * num_bins > 1.0:
|
120 |
+
raise ValueError("Minimal bin height too large for the number of bins")
|
121 |
+
|
122 |
+
widths = F.softmax(unnormalized_widths, dim=-1)
|
123 |
+
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
124 |
+
cumwidths = torch.cumsum(widths, dim=-1)
|
125 |
+
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
126 |
+
cumwidths = (right - left) * cumwidths + left
|
127 |
+
cumwidths[..., 0] = left
|
128 |
+
cumwidths[..., -1] = right
|
129 |
+
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
130 |
+
|
131 |
+
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
132 |
+
|
133 |
+
heights = F.softmax(unnormalized_heights, dim=-1)
|
134 |
+
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
135 |
+
cumheights = torch.cumsum(heights, dim=-1)
|
136 |
+
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
137 |
+
cumheights = (top - bottom) * cumheights + bottom
|
138 |
+
cumheights[..., 0] = bottom
|
139 |
+
cumheights[..., -1] = top
|
140 |
+
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
141 |
+
|
142 |
+
if inverse:
|
143 |
+
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
144 |
+
else:
|
145 |
+
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
146 |
+
|
147 |
+
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
148 |
+
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
149 |
+
|
150 |
+
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
151 |
+
delta = heights / widths
|
152 |
+
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
153 |
+
|
154 |
+
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
155 |
+
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
156 |
+
|
157 |
+
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
158 |
+
|
159 |
+
if inverse:
|
160 |
+
a = (inputs - input_cumheights) * (
|
161 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
162 |
+
) + input_heights * (input_delta - input_derivatives)
|
163 |
+
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
164 |
+
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
165 |
+
)
|
166 |
+
c = -input_delta * (inputs - input_cumheights)
|
167 |
+
|
168 |
+
discriminant = b.pow(2) - 4 * a * c
|
169 |
+
assert (discriminant >= 0).all()
|
170 |
+
|
171 |
+
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
172 |
+
outputs = root * input_bin_widths + input_cumwidths
|
173 |
+
|
174 |
+
theta_one_minus_theta = root * (1 - root)
|
175 |
+
denominator = input_delta + (
|
176 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
177 |
+
* theta_one_minus_theta
|
178 |
+
)
|
179 |
+
derivative_numerator = input_delta.pow(2) * (
|
180 |
+
input_derivatives_plus_one * root.pow(2)
|
181 |
+
+ 2 * input_delta * theta_one_minus_theta
|
182 |
+
+ input_derivatives * (1 - root).pow(2)
|
183 |
+
)
|
184 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
185 |
+
|
186 |
+
return outputs, -logabsdet
|
187 |
+
else:
|
188 |
+
theta = (inputs - input_cumwidths) / input_bin_widths
|
189 |
+
theta_one_minus_theta = theta * (1 - theta)
|
190 |
+
|
191 |
+
numerator = input_heights * (
|
192 |
+
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
193 |
+
)
|
194 |
+
denominator = input_delta + (
|
195 |
+
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
196 |
+
* theta_one_minus_theta
|
197 |
+
)
|
198 |
+
outputs = input_cumheights + numerator / denominator
|
199 |
+
|
200 |
+
derivative_numerator = input_delta.pow(2) * (
|
201 |
+
input_derivatives_plus_one * theta.pow(2)
|
202 |
+
+ 2 * input_delta * theta_one_minus_theta
|
203 |
+
+ input_derivatives * (1 - theta).pow(2)
|
204 |
+
)
|
205 |
+
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
206 |
+
|
207 |
+
return outputs, logabsdet
|
infer/lib/rmvpe.py
ADDED
@@ -0,0 +1,717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pdb, os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
try:
|
6 |
+
#Fix "Torch not compiled with CUDA enabled"
|
7 |
+
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
|
8 |
+
if torch.xpu.is_available():
|
9 |
+
from infer.modules.ipex import ipex_init
|
10 |
+
ipex_init()
|
11 |
+
except Exception:
|
12 |
+
pass
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from librosa.util import normalize, pad_center, tiny
|
16 |
+
from scipy.signal import get_window
|
17 |
+
|
18 |
+
import logging
|
19 |
+
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
###stft codes from https://github.com/pseeth/torch-stft/blob/master/torch_stft/util.py
|
24 |
+
def window_sumsquare(
|
25 |
+
window,
|
26 |
+
n_frames,
|
27 |
+
hop_length=200,
|
28 |
+
win_length=800,
|
29 |
+
n_fft=800,
|
30 |
+
dtype=np.float32,
|
31 |
+
norm=None,
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
# from librosa 0.6
|
35 |
+
Compute the sum-square envelope of a window function at a given hop length.
|
36 |
+
This is used to estimate modulation effects induced by windowing
|
37 |
+
observations in short-time fourier transforms.
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
window : string, tuple, number, callable, or list-like
|
41 |
+
Window specification, as in `get_window`
|
42 |
+
n_frames : int > 0
|
43 |
+
The number of analysis frames
|
44 |
+
hop_length : int > 0
|
45 |
+
The number of samples to advance between frames
|
46 |
+
win_length : [optional]
|
47 |
+
The length of the window function. By default, this matches `n_fft`.
|
48 |
+
n_fft : int > 0
|
49 |
+
The length of each analysis frame.
|
50 |
+
dtype : np.dtype
|
51 |
+
The data type of the output
|
52 |
+
Returns
|
53 |
+
-------
|
54 |
+
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
|
55 |
+
The sum-squared envelope of the window function
|
56 |
+
"""
|
57 |
+
if win_length is None:
|
58 |
+
win_length = n_fft
|
59 |
+
|
60 |
+
n = n_fft + hop_length * (n_frames - 1)
|
61 |
+
x = np.zeros(n, dtype=dtype)
|
62 |
+
|
63 |
+
# Compute the squared window at the desired length
|
64 |
+
win_sq = get_window(window, win_length, fftbins=True)
|
65 |
+
win_sq = normalize(win_sq, norm=norm) ** 2
|
66 |
+
win_sq = pad_center(win_sq, n_fft)
|
67 |
+
|
68 |
+
# Fill the envelope
|
69 |
+
for i in range(n_frames):
|
70 |
+
sample = i * hop_length
|
71 |
+
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
|
72 |
+
return x
|
73 |
+
|
74 |
+
|
75 |
+
class STFT(torch.nn.Module):
|
76 |
+
def __init__(
|
77 |
+
self, filter_length=1024, hop_length=512, win_length=None, window="hann"
|
78 |
+
):
|
79 |
+
"""
|
80 |
+
This module implements an STFT using 1D convolution and 1D transpose convolutions.
|
81 |
+
This is a bit tricky so there are some cases that probably won't work as working
|
82 |
+
out the same sizes before and after in all overlap add setups is tough. Right now,
|
83 |
+
this code should work with hop lengths that are half the filter length (50% overlap
|
84 |
+
between frames).
|
85 |
+
|
86 |
+
Keyword Arguments:
|
87 |
+
filter_length {int} -- Length of filters used (default: {1024})
|
88 |
+
hop_length {int} -- Hop length of STFT (restrict to 50% overlap between frames) (default: {512})
|
89 |
+
win_length {[type]} -- Length of the window function applied to each frame (if not specified, it
|
90 |
+
equals the filter length). (default: {None})
|
91 |
+
window {str} -- Type of window to use (options are bartlett, hann, hamming, blackman, blackmanharris)
|
92 |
+
(default: {'hann'})
|
93 |
+
"""
|
94 |
+
super(STFT, self).__init__()
|
95 |
+
self.filter_length = filter_length
|
96 |
+
self.hop_length = hop_length
|
97 |
+
self.win_length = win_length if win_length else filter_length
|
98 |
+
self.window = window
|
99 |
+
self.forward_transform = None
|
100 |
+
self.pad_amount = int(self.filter_length / 2)
|
101 |
+
scale = self.filter_length / self.hop_length
|
102 |
+
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
103 |
+
|
104 |
+
cutoff = int((self.filter_length / 2 + 1))
|
105 |
+
fourier_basis = np.vstack(
|
106 |
+
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
|
107 |
+
)
|
108 |
+
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
|
109 |
+
inverse_basis = torch.FloatTensor(
|
110 |
+
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
|
111 |
+
)
|
112 |
+
|
113 |
+
assert filter_length >= self.win_length
|
114 |
+
# get window and zero center pad it to filter_length
|
115 |
+
fft_window = get_window(window, self.win_length, fftbins=True)
|
116 |
+
fft_window = pad_center(fft_window, size=filter_length)
|
117 |
+
fft_window = torch.from_numpy(fft_window).float()
|
118 |
+
|
119 |
+
# window the bases
|
120 |
+
forward_basis *= fft_window
|
121 |
+
inverse_basis *= fft_window
|
122 |
+
|
123 |
+
self.register_buffer("forward_basis", forward_basis.float())
|
124 |
+
self.register_buffer("inverse_basis", inverse_basis.float())
|
125 |
+
|
126 |
+
def transform(self, input_data):
|
127 |
+
"""Take input data (audio) to STFT domain.
|
128 |
+
|
129 |
+
Arguments:
|
130 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
134 |
+
num_frequencies, num_frames)
|
135 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
136 |
+
num_frequencies, num_frames)
|
137 |
+
"""
|
138 |
+
num_batches = input_data.shape[0]
|
139 |
+
num_samples = input_data.shape[-1]
|
140 |
+
|
141 |
+
self.num_samples = num_samples
|
142 |
+
|
143 |
+
# similar to librosa, reflect-pad the input
|
144 |
+
input_data = input_data.view(num_batches, 1, num_samples)
|
145 |
+
# print(1234,input_data.shape)
|
146 |
+
input_data = F.pad(
|
147 |
+
input_data.unsqueeze(1),
|
148 |
+
(self.pad_amount, self.pad_amount, 0, 0, 0, 0),
|
149 |
+
mode="reflect",
|
150 |
+
).squeeze(1)
|
151 |
+
# print(2333,input_data.shape,self.forward_basis.shape,self.hop_length)
|
152 |
+
# pdb.set_trace()
|
153 |
+
forward_transform = F.conv1d(
|
154 |
+
input_data, self.forward_basis, stride=self.hop_length, padding=0
|
155 |
+
)
|
156 |
+
|
157 |
+
cutoff = int((self.filter_length / 2) + 1)
|
158 |
+
real_part = forward_transform[:, :cutoff, :]
|
159 |
+
imag_part = forward_transform[:, cutoff:, :]
|
160 |
+
|
161 |
+
magnitude = torch.sqrt(real_part**2 + imag_part**2)
|
162 |
+
# phase = torch.atan2(imag_part.data, real_part.data)
|
163 |
+
|
164 |
+
return magnitude # , phase
|
165 |
+
|
166 |
+
def inverse(self, magnitude, phase):
|
167 |
+
"""Call the inverse STFT (iSTFT), given magnitude and phase tensors produced
|
168 |
+
by the ```transform``` function.
|
169 |
+
|
170 |
+
Arguments:
|
171 |
+
magnitude {tensor} -- Magnitude of STFT with shape (num_batch,
|
172 |
+
num_frequencies, num_frames)
|
173 |
+
phase {tensor} -- Phase of STFT with shape (num_batch,
|
174 |
+
num_frequencies, num_frames)
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
|
178 |
+
shape (num_batch, num_samples)
|
179 |
+
"""
|
180 |
+
recombine_magnitude_phase = torch.cat(
|
181 |
+
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
182 |
+
)
|
183 |
+
|
184 |
+
inverse_transform = F.conv_transpose1d(
|
185 |
+
recombine_magnitude_phase,
|
186 |
+
self.inverse_basis,
|
187 |
+
stride=self.hop_length,
|
188 |
+
padding=0,
|
189 |
+
)
|
190 |
+
|
191 |
+
if self.window is not None:
|
192 |
+
window_sum = window_sumsquare(
|
193 |
+
self.window,
|
194 |
+
magnitude.size(-1),
|
195 |
+
hop_length=self.hop_length,
|
196 |
+
win_length=self.win_length,
|
197 |
+
n_fft=self.filter_length,
|
198 |
+
dtype=np.float32,
|
199 |
+
)
|
200 |
+
# remove modulation effects
|
201 |
+
approx_nonzero_indices = torch.from_numpy(
|
202 |
+
np.where(window_sum > tiny(window_sum))[0]
|
203 |
+
)
|
204 |
+
window_sum = torch.from_numpy(window_sum).to(inverse_transform.device)
|
205 |
+
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
|
206 |
+
approx_nonzero_indices
|
207 |
+
]
|
208 |
+
|
209 |
+
# scale by hop ratio
|
210 |
+
inverse_transform *= float(self.filter_length) / self.hop_length
|
211 |
+
|
212 |
+
inverse_transform = inverse_transform[..., self.pad_amount :]
|
213 |
+
inverse_transform = inverse_transform[..., : self.num_samples]
|
214 |
+
inverse_transform = inverse_transform.squeeze(1)
|
215 |
+
|
216 |
+
return inverse_transform
|
217 |
+
|
218 |
+
def forward(self, input_data):
|
219 |
+
"""Take input data (audio) to STFT domain and then back to audio.
|
220 |
+
|
221 |
+
Arguments:
|
222 |
+
input_data {tensor} -- Tensor of floats, with shape (num_batch, num_samples)
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
reconstruction {tensor} -- Reconstructed audio given magnitude and phase. Of
|
226 |
+
shape (num_batch, num_samples)
|
227 |
+
"""
|
228 |
+
self.magnitude, self.phase = self.transform(input_data)
|
229 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
230 |
+
return reconstruction
|
231 |
+
|
232 |
+
|
233 |
+
from time import time as ttime
|
234 |
+
|
235 |
+
|
236 |
+
class BiGRU(nn.Module):
|
237 |
+
def __init__(self, input_features, hidden_features, num_layers):
|
238 |
+
super(BiGRU, self).__init__()
|
239 |
+
self.gru = nn.GRU(
|
240 |
+
input_features,
|
241 |
+
hidden_features,
|
242 |
+
num_layers=num_layers,
|
243 |
+
batch_first=True,
|
244 |
+
bidirectional=True,
|
245 |
+
)
|
246 |
+
|
247 |
+
def forward(self, x):
|
248 |
+
return self.gru(x)[0]
|
249 |
+
|
250 |
+
|
251 |
+
class ConvBlockRes(nn.Module):
|
252 |
+
def __init__(self, in_channels, out_channels, momentum=0.01):
|
253 |
+
super(ConvBlockRes, self).__init__()
|
254 |
+
self.conv = nn.Sequential(
|
255 |
+
nn.Conv2d(
|
256 |
+
in_channels=in_channels,
|
257 |
+
out_channels=out_channels,
|
258 |
+
kernel_size=(3, 3),
|
259 |
+
stride=(1, 1),
|
260 |
+
padding=(1, 1),
|
261 |
+
bias=False,
|
262 |
+
),
|
263 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
264 |
+
nn.ReLU(),
|
265 |
+
nn.Conv2d(
|
266 |
+
in_channels=out_channels,
|
267 |
+
out_channels=out_channels,
|
268 |
+
kernel_size=(3, 3),
|
269 |
+
stride=(1, 1),
|
270 |
+
padding=(1, 1),
|
271 |
+
bias=False,
|
272 |
+
),
|
273 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
274 |
+
nn.ReLU(),
|
275 |
+
)
|
276 |
+
if in_channels != out_channels:
|
277 |
+
self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
|
278 |
+
self.is_shortcut = True
|
279 |
+
else:
|
280 |
+
self.is_shortcut = False
|
281 |
+
|
282 |
+
def forward(self, x):
|
283 |
+
if self.is_shortcut:
|
284 |
+
return self.conv(x) + self.shortcut(x)
|
285 |
+
else:
|
286 |
+
return self.conv(x) + x
|
287 |
+
|
288 |
+
|
289 |
+
class Encoder(nn.Module):
|
290 |
+
def __init__(
|
291 |
+
self,
|
292 |
+
in_channels,
|
293 |
+
in_size,
|
294 |
+
n_encoders,
|
295 |
+
kernel_size,
|
296 |
+
n_blocks,
|
297 |
+
out_channels=16,
|
298 |
+
momentum=0.01,
|
299 |
+
):
|
300 |
+
super(Encoder, self).__init__()
|
301 |
+
self.n_encoders = n_encoders
|
302 |
+
self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
|
303 |
+
self.layers = nn.ModuleList()
|
304 |
+
self.latent_channels = []
|
305 |
+
for i in range(self.n_encoders):
|
306 |
+
self.layers.append(
|
307 |
+
ResEncoderBlock(
|
308 |
+
in_channels, out_channels, kernel_size, n_blocks, momentum=momentum
|
309 |
+
)
|
310 |
+
)
|
311 |
+
self.latent_channels.append([out_channels, in_size])
|
312 |
+
in_channels = out_channels
|
313 |
+
out_channels *= 2
|
314 |
+
in_size //= 2
|
315 |
+
self.out_size = in_size
|
316 |
+
self.out_channel = out_channels
|
317 |
+
|
318 |
+
def forward(self, x):
|
319 |
+
concat_tensors = []
|
320 |
+
x = self.bn(x)
|
321 |
+
for i in range(self.n_encoders):
|
322 |
+
_, x = self.layers[i](x)
|
323 |
+
concat_tensors.append(_)
|
324 |
+
return x, concat_tensors
|
325 |
+
|
326 |
+
|
327 |
+
class ResEncoderBlock(nn.Module):
|
328 |
+
def __init__(
|
329 |
+
self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01
|
330 |
+
):
|
331 |
+
super(ResEncoderBlock, self).__init__()
|
332 |
+
self.n_blocks = n_blocks
|
333 |
+
self.conv = nn.ModuleList()
|
334 |
+
self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
|
335 |
+
for i in range(n_blocks - 1):
|
336 |
+
self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
|
337 |
+
self.kernel_size = kernel_size
|
338 |
+
if self.kernel_size is not None:
|
339 |
+
self.pool = nn.AvgPool2d(kernel_size=kernel_size)
|
340 |
+
|
341 |
+
def forward(self, x):
|
342 |
+
for i in range(self.n_blocks):
|
343 |
+
x = self.conv[i](x)
|
344 |
+
if self.kernel_size is not None:
|
345 |
+
return x, self.pool(x)
|
346 |
+
else:
|
347 |
+
return x
|
348 |
+
|
349 |
+
|
350 |
+
class Intermediate(nn.Module): #
|
351 |
+
def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
|
352 |
+
super(Intermediate, self).__init__()
|
353 |
+
self.n_inters = n_inters
|
354 |
+
self.layers = nn.ModuleList()
|
355 |
+
self.layers.append(
|
356 |
+
ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)
|
357 |
+
)
|
358 |
+
for i in range(self.n_inters - 1):
|
359 |
+
self.layers.append(
|
360 |
+
ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)
|
361 |
+
)
|
362 |
+
|
363 |
+
def forward(self, x):
|
364 |
+
for i in range(self.n_inters):
|
365 |
+
x = self.layers[i](x)
|
366 |
+
return x
|
367 |
+
|
368 |
+
|
369 |
+
class ResDecoderBlock(nn.Module):
|
370 |
+
def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
|
371 |
+
super(ResDecoderBlock, self).__init__()
|
372 |
+
out_padding = (0, 1) if stride == (1, 2) else (1, 1)
|
373 |
+
self.n_blocks = n_blocks
|
374 |
+
self.conv1 = nn.Sequential(
|
375 |
+
nn.ConvTranspose2d(
|
376 |
+
in_channels=in_channels,
|
377 |
+
out_channels=out_channels,
|
378 |
+
kernel_size=(3, 3),
|
379 |
+
stride=stride,
|
380 |
+
padding=(1, 1),
|
381 |
+
output_padding=out_padding,
|
382 |
+
bias=False,
|
383 |
+
),
|
384 |
+
nn.BatchNorm2d(out_channels, momentum=momentum),
|
385 |
+
nn.ReLU(),
|
386 |
+
)
|
387 |
+
self.conv2 = nn.ModuleList()
|
388 |
+
self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
|
389 |
+
for i in range(n_blocks - 1):
|
390 |
+
self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))
|
391 |
+
|
392 |
+
def forward(self, x, concat_tensor):
|
393 |
+
x = self.conv1(x)
|
394 |
+
x = torch.cat((x, concat_tensor), dim=1)
|
395 |
+
for i in range(self.n_blocks):
|
396 |
+
x = self.conv2[i](x)
|
397 |
+
return x
|
398 |
+
|
399 |
+
|
400 |
+
class Decoder(nn.Module):
|
401 |
+
def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
|
402 |
+
super(Decoder, self).__init__()
|
403 |
+
self.layers = nn.ModuleList()
|
404 |
+
self.n_decoders = n_decoders
|
405 |
+
for i in range(self.n_decoders):
|
406 |
+
out_channels = in_channels // 2
|
407 |
+
self.layers.append(
|
408 |
+
ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)
|
409 |
+
)
|
410 |
+
in_channels = out_channels
|
411 |
+
|
412 |
+
def forward(self, x, concat_tensors):
|
413 |
+
for i in range(self.n_decoders):
|
414 |
+
x = self.layers[i](x, concat_tensors[-1 - i])
|
415 |
+
return x
|
416 |
+
|
417 |
+
|
418 |
+
class DeepUnet(nn.Module):
|
419 |
+
def __init__(
|
420 |
+
self,
|
421 |
+
kernel_size,
|
422 |
+
n_blocks,
|
423 |
+
en_de_layers=5,
|
424 |
+
inter_layers=4,
|
425 |
+
in_channels=1,
|
426 |
+
en_out_channels=16,
|
427 |
+
):
|
428 |
+
super(DeepUnet, self).__init__()
|
429 |
+
self.encoder = Encoder(
|
430 |
+
in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels
|
431 |
+
)
|
432 |
+
self.intermediate = Intermediate(
|
433 |
+
self.encoder.out_channel // 2,
|
434 |
+
self.encoder.out_channel,
|
435 |
+
inter_layers,
|
436 |
+
n_blocks,
|
437 |
+
)
|
438 |
+
self.decoder = Decoder(
|
439 |
+
self.encoder.out_channel, en_de_layers, kernel_size, n_blocks
|
440 |
+
)
|
441 |
+
|
442 |
+
def forward(self, x):
|
443 |
+
x, concat_tensors = self.encoder(x)
|
444 |
+
x = self.intermediate(x)
|
445 |
+
x = self.decoder(x, concat_tensors)
|
446 |
+
return x
|
447 |
+
|
448 |
+
|
449 |
+
class E2E(nn.Module):
|
450 |
+
def __init__(
|
451 |
+
self,
|
452 |
+
n_blocks,
|
453 |
+
n_gru,
|
454 |
+
kernel_size,
|
455 |
+
en_de_layers=5,
|
456 |
+
inter_layers=4,
|
457 |
+
in_channels=1,
|
458 |
+
en_out_channels=16,
|
459 |
+
):
|
460 |
+
super(E2E, self).__init__()
|
461 |
+
self.unet = DeepUnet(
|
462 |
+
kernel_size,
|
463 |
+
n_blocks,
|
464 |
+
en_de_layers,
|
465 |
+
inter_layers,
|
466 |
+
in_channels,
|
467 |
+
en_out_channels,
|
468 |
+
)
|
469 |
+
self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1))
|
470 |
+
if n_gru:
|
471 |
+
self.fc = nn.Sequential(
|
472 |
+
BiGRU(3 * 128, 256, n_gru),
|
473 |
+
nn.Linear(512, 360),
|
474 |
+
nn.Dropout(0.25),
|
475 |
+
nn.Sigmoid(),
|
476 |
+
)
|
477 |
+
else:
|
478 |
+
self.fc = nn.Sequential(
|
479 |
+
nn.Linear(3 * nn.N_MELS, nn.N_CLASS), nn.Dropout(0.25), nn.Sigmoid()
|
480 |
+
)
|
481 |
+
|
482 |
+
def forward(self, mel):
|
483 |
+
# print(mel.shape)
|
484 |
+
mel = mel.transpose(-1, -2).unsqueeze(1)
|
485 |
+
x = self.cnn(self.unet(mel)).transpose(1, 2).flatten(-2)
|
486 |
+
x = self.fc(x)
|
487 |
+
# print(x.shape)
|
488 |
+
return x
|
489 |
+
|
490 |
+
|
491 |
+
from librosa.filters import mel
|
492 |
+
|
493 |
+
|
494 |
+
class MelSpectrogram(torch.nn.Module):
|
495 |
+
def __init__(
|
496 |
+
self,
|
497 |
+
is_half,
|
498 |
+
n_mel_channels,
|
499 |
+
sampling_rate,
|
500 |
+
win_length,
|
501 |
+
hop_length,
|
502 |
+
n_fft=None,
|
503 |
+
mel_fmin=0,
|
504 |
+
mel_fmax=None,
|
505 |
+
clamp=1e-5,
|
506 |
+
):
|
507 |
+
super().__init__()
|
508 |
+
n_fft = win_length if n_fft is None else n_fft
|
509 |
+
self.hann_window = {}
|
510 |
+
mel_basis = mel(
|
511 |
+
sr=sampling_rate,
|
512 |
+
n_fft=n_fft,
|
513 |
+
n_mels=n_mel_channels,
|
514 |
+
fmin=mel_fmin,
|
515 |
+
fmax=mel_fmax,
|
516 |
+
htk=True,
|
517 |
+
)
|
518 |
+
mel_basis = torch.from_numpy(mel_basis).float()
|
519 |
+
self.register_buffer("mel_basis", mel_basis)
|
520 |
+
self.n_fft = win_length if n_fft is None else n_fft
|
521 |
+
self.hop_length = hop_length
|
522 |
+
self.win_length = win_length
|
523 |
+
self.sampling_rate = sampling_rate
|
524 |
+
self.n_mel_channels = n_mel_channels
|
525 |
+
self.clamp = clamp
|
526 |
+
self.is_half = is_half
|
527 |
+
|
528 |
+
def forward(self, audio, keyshift=0, speed=1, center=True):
|
529 |
+
factor = 2 ** (keyshift / 12)
|
530 |
+
n_fft_new = int(np.round(self.n_fft * factor))
|
531 |
+
win_length_new = int(np.round(self.win_length * factor))
|
532 |
+
hop_length_new = int(np.round(self.hop_length * speed))
|
533 |
+
keyshift_key = str(keyshift) + "_" + str(audio.device)
|
534 |
+
if keyshift_key not in self.hann_window:
|
535 |
+
self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(
|
536 |
+
# "cpu"if(audio.device.type=="privateuseone") else audio.device
|
537 |
+
audio.device
|
538 |
+
)
|
539 |
+
# fft = torch.stft(#doesn't support pytorch_dml
|
540 |
+
# # audio.cpu() if(audio.device.type=="privateuseone")else audio,
|
541 |
+
# audio,
|
542 |
+
# n_fft=n_fft_new,
|
543 |
+
# hop_length=hop_length_new,
|
544 |
+
# win_length=win_length_new,
|
545 |
+
# window=self.hann_window[keyshift_key],
|
546 |
+
# center=center,
|
547 |
+
# return_complex=True,
|
548 |
+
# )
|
549 |
+
# magnitude = torch.sqrt(fft.real.pow(2) + fft.imag.pow(2))
|
550 |
+
# print(1111111111)
|
551 |
+
# print(222222222222222,audio.device,self.is_half)
|
552 |
+
if hasattr(self, "stft") == False:
|
553 |
+
# print(n_fft_new,hop_length_new,win_length_new,audio.shape)
|
554 |
+
self.stft = STFT(
|
555 |
+
filter_length=n_fft_new,
|
556 |
+
hop_length=hop_length_new,
|
557 |
+
win_length=win_length_new,
|
558 |
+
window="hann",
|
559 |
+
).to(audio.device)
|
560 |
+
magnitude = self.stft.transform(audio) # phase
|
561 |
+
# if (audio.device.type == "privateuseone"):
|
562 |
+
# magnitude=magnitude.to(audio.device)
|
563 |
+
if keyshift != 0:
|
564 |
+
size = self.n_fft // 2 + 1
|
565 |
+
resize = magnitude.size(1)
|
566 |
+
if resize < size:
|
567 |
+
magnitude = F.pad(magnitude, (0, 0, 0, size - resize))
|
568 |
+
magnitude = magnitude[:, :size, :] * self.win_length / win_length_new
|
569 |
+
mel_output = torch.matmul(self.mel_basis, magnitude)
|
570 |
+
if self.is_half == True:
|
571 |
+
mel_output = mel_output.half()
|
572 |
+
log_mel_spec = torch.log(torch.clamp(mel_output, min=self.clamp))
|
573 |
+
# print(log_mel_spec.device.type)
|
574 |
+
return log_mel_spec
|
575 |
+
|
576 |
+
|
577 |
+
class RMVPE:
|
578 |
+
def __init__(self, model_path, is_half, device=None):
|
579 |
+
self.resample_kernel = {}
|
580 |
+
self.resample_kernel = {}
|
581 |
+
self.is_half = is_half
|
582 |
+
if device is None:
|
583 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
584 |
+
self.device = device
|
585 |
+
self.mel_extractor = MelSpectrogram(
|
586 |
+
is_half, 128, 16000, 1024, 160, None, 30, 8000
|
587 |
+
).to(device)
|
588 |
+
if "privateuseone" in str(device):
|
589 |
+
import onnxruntime as ort
|
590 |
+
|
591 |
+
ort_session = ort.InferenceSession(
|
592 |
+
"%s/rmvpe.onnx" % os.environ["rmvpe_root"],
|
593 |
+
providers=["DmlExecutionProvider"],
|
594 |
+
)
|
595 |
+
self.model = ort_session
|
596 |
+
else:
|
597 |
+
model = E2E(4, 1, (2, 2))
|
598 |
+
ckpt = torch.load(model_path, map_location="cpu")
|
599 |
+
model.load_state_dict(ckpt)
|
600 |
+
model.eval()
|
601 |
+
if is_half == True:
|
602 |
+
model = model.half()
|
603 |
+
self.model = model
|
604 |
+
self.model = self.model.to(device)
|
605 |
+
cents_mapping = 20 * np.arange(360) + 1997.3794084376191
|
606 |
+
self.cents_mapping = np.pad(cents_mapping, (4, 4)) # 368
|
607 |
+
|
608 |
+
def mel2hidden(self, mel):
|
609 |
+
with torch.no_grad():
|
610 |
+
n_frames = mel.shape[-1]
|
611 |
+
mel = F.pad(
|
612 |
+
mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="constant"
|
613 |
+
)
|
614 |
+
if "privateuseone" in str(self.device):
|
615 |
+
onnx_input_name = self.model.get_inputs()[0].name
|
616 |
+
onnx_outputs_names = self.model.get_outputs()[0].name
|
617 |
+
hidden = self.model.run(
|
618 |
+
[onnx_outputs_names],
|
619 |
+
input_feed={onnx_input_name: mel.cpu().numpy()},
|
620 |
+
)[0]
|
621 |
+
else:
|
622 |
+
hidden = self.model(mel)
|
623 |
+
return hidden[:, :n_frames]
|
624 |
+
|
625 |
+
def decode(self, hidden, thred=0.03):
|
626 |
+
cents_pred = self.to_local_average_cents(hidden, thred=thred)
|
627 |
+
f0 = 10 * (2 ** (cents_pred / 1200))
|
628 |
+
f0[f0 == 10] = 0
|
629 |
+
# f0 = np.array([10 * (2 ** (cent_pred / 1200)) if cent_pred else 0 for cent_pred in cents_pred])
|
630 |
+
return f0
|
631 |
+
|
632 |
+
def infer_from_audio(self, audio, thred=0.03):
|
633 |
+
# torch.cuda.synchronize()
|
634 |
+
t0 = ttime()
|
635 |
+
mel = self.mel_extractor(
|
636 |
+
torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True
|
637 |
+
)
|
638 |
+
# print(123123123,mel.device.type)
|
639 |
+
# torch.cuda.synchronize()
|
640 |
+
t1 = ttime()
|
641 |
+
hidden = self.mel2hidden(mel)
|
642 |
+
# torch.cuda.synchronize()
|
643 |
+
t2 = ttime()
|
644 |
+
# print(234234,hidden.device.type)
|
645 |
+
if "privateuseone" not in str(self.device):
|
646 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
647 |
+
else:
|
648 |
+
hidden = hidden[0]
|
649 |
+
if self.is_half == True:
|
650 |
+
hidden = hidden.astype("float32")
|
651 |
+
|
652 |
+
f0 = self.decode(hidden, thred=thred)
|
653 |
+
# torch.cuda.synchronize()
|
654 |
+
t3 = ttime()
|
655 |
+
# print("hmvpe:%s\t%s\t%s\t%s"%(t1-t0,t2-t1,t3-t2,t3-t0))
|
656 |
+
return f0
|
657 |
+
|
658 |
+
def infer_from_audio_with_pitch(self, audio, thred=0.03, f0_min=50, f0_max=1100):
|
659 |
+
audio = torch.from_numpy(audio).float().to(self.device).unsqueeze(0)
|
660 |
+
mel = self.mel_extractor(audio, center=True)
|
661 |
+
hidden = self.mel2hidden(mel)
|
662 |
+
hidden = hidden.squeeze(0).cpu().numpy()
|
663 |
+
if self.is_half == True:
|
664 |
+
hidden = hidden.astype("float32")
|
665 |
+
f0 = self.decode(hidden, thred=thred)
|
666 |
+
f0[(f0 < f0_min) | (f0 > f0_max)] = 0
|
667 |
+
return f0
|
668 |
+
|
669 |
+
def to_local_average_cents(self, salience, thred=0.05):
|
670 |
+
# t0 = ttime()
|
671 |
+
center = np.argmax(salience, axis=1) # 帧长#index
|
672 |
+
salience = np.pad(salience, ((0, 0), (4, 4))) # 帧长,368
|
673 |
+
# t1 = ttime()
|
674 |
+
center += 4
|
675 |
+
todo_salience = []
|
676 |
+
todo_cents_mapping = []
|
677 |
+
starts = center - 4
|
678 |
+
ends = center + 5
|
679 |
+
for idx in range(salience.shape[0]):
|
680 |
+
todo_salience.append(salience[:, starts[idx] : ends[idx]][idx])
|
681 |
+
todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]])
|
682 |
+
# t2 = ttime()
|
683 |
+
todo_salience = np.array(todo_salience) # 帧长,9
|
684 |
+
todo_cents_mapping = np.array(todo_cents_mapping) # 帧长,9
|
685 |
+
product_sum = np.sum(todo_salience * todo_cents_mapping, 1)
|
686 |
+
weight_sum = np.sum(todo_salience, 1) # 帧长
|
687 |
+
devided = product_sum / weight_sum # 帧长
|
688 |
+
# t3 = ttime()
|
689 |
+
maxx = np.max(salience, axis=1) # 帧长
|
690 |
+
devided[maxx <= thred] = 0
|
691 |
+
# t4 = ttime()
|
692 |
+
# print("decode:%s\t%s\t%s\t%s" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
|
693 |
+
return devided
|
694 |
+
|
695 |
+
|
696 |
+
if __name__ == "__main__":
|
697 |
+
import librosa
|
698 |
+
import soundfile as sf
|
699 |
+
|
700 |
+
audio, sampling_rate = sf.read(r"C:\Users\liujing04\Desktop\Z\冬之花clip1.wav")
|
701 |
+
if len(audio.shape) > 1:
|
702 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
703 |
+
audio_bak = audio.copy()
|
704 |
+
if sampling_rate != 16000:
|
705 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
706 |
+
model_path = r"D:\BaiduNetdiskDownload\RVC-beta-v2-0727AMD_realtime\rmvpe.pt"
|
707 |
+
thred = 0.03 # 0.01
|
708 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
709 |
+
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
710 |
+
t0 = ttime()
|
711 |
+
f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
712 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
713 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
714 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
715 |
+
# f0 = rmvpe.infer_from_audio(audio, thred=thred)
|
716 |
+
t1 = ttime()
|
717 |
+
logger.info("%s %.2f", f0.shape, t1 - t0)
|
infer/modules/vc/__init__.py
ADDED
File without changes
|
infer/modules/vc/modules.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import traceback
|
3 |
+
import logging
|
4 |
+
now_dir = os.getcwd()
|
5 |
+
sys.path.append(now_dir)
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
import lib.globals.globals as rvc_globals
|
8 |
+
import numpy as np
|
9 |
+
import soundfile as sf
|
10 |
+
import torch
|
11 |
+
from io import BytesIO
|
12 |
+
from infer.lib.audio import load_audio
|
13 |
+
from infer.lib.audio import wav2
|
14 |
+
from infer.lib.infer_pack.models import (
|
15 |
+
SynthesizerTrnMs256NSFsid,
|
16 |
+
SynthesizerTrnMs256NSFsid_nono,
|
17 |
+
SynthesizerTrnMs768NSFsid,
|
18 |
+
SynthesizerTrnMs768NSFsid_nono,
|
19 |
+
)
|
20 |
+
from infer.modules.vc.pipeline import Pipeline
|
21 |
+
from infer.modules.vc.utils import *
|
22 |
+
import time
|
23 |
+
import scipy.io.wavfile as wavfile
|
24 |
+
|
25 |
+
def note_to_hz(note_name):
|
26 |
+
SEMITONES = {'C': -9, 'C#': -8, 'D': -7, 'D#': -6, 'E': -5, 'F': -4, 'F#': -3, 'G': -2, 'G#': -1, 'A': 0, 'A#': 1, 'B': 2}
|
27 |
+
pitch_class, octave = note_name[:-1], int(note_name[-1])
|
28 |
+
semitone = SEMITONES[pitch_class]
|
29 |
+
note_number = 12 * (octave - 4) + semitone
|
30 |
+
frequency = 440.0 * (2.0 ** (1.0/12)) ** note_number
|
31 |
+
return frequency
|
32 |
+
|
33 |
+
class VC:
|
34 |
+
def __init__(self, config):
|
35 |
+
self.n_spk = None
|
36 |
+
self.tgt_sr = None
|
37 |
+
self.net_g = None
|
38 |
+
self.pipeline = None
|
39 |
+
self.cpt = None
|
40 |
+
self.version = None
|
41 |
+
self.if_f0 = None
|
42 |
+
self.version = None
|
43 |
+
self.hubert_model = None
|
44 |
+
|
45 |
+
self.config = config
|
46 |
+
|
47 |
+
def get_vc(self, sid, *to_return_protect):
|
48 |
+
logger.info("Get sid: " + sid)
|
49 |
+
|
50 |
+
to_return_protect0 = {
|
51 |
+
"visible": self.if_f0 != 0,
|
52 |
+
"value": to_return_protect[0]
|
53 |
+
if self.if_f0 != 0 and to_return_protect
|
54 |
+
else 0.5,
|
55 |
+
"__type__": "update",
|
56 |
+
}
|
57 |
+
to_return_protect1 = {
|
58 |
+
"visible": self.if_f0 != 0,
|
59 |
+
"value": to_return_protect[1]
|
60 |
+
if self.if_f0 != 0 and to_return_protect
|
61 |
+
else 0.33,
|
62 |
+
"__type__": "update",
|
63 |
+
}
|
64 |
+
|
65 |
+
if not sid:
|
66 |
+
if self.hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
67 |
+
logger.info("Clean model cache")
|
68 |
+
del (
|
69 |
+
self.net_g,
|
70 |
+
self.n_spk,
|
71 |
+
self.vc,
|
72 |
+
self.hubert_model,
|
73 |
+
self.tgt_sr,
|
74 |
+
) # ,cpt
|
75 |
+
self.hubert_model = (
|
76 |
+
self.net_g
|
77 |
+
) = self.n_spk = self.vc = self.hubert_model = self.tgt_sr = None
|
78 |
+
if torch.cuda.is_available():
|
79 |
+
torch.cuda.empty_cache()
|
80 |
+
###楼下不这么折腾清理不干净
|
81 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
82 |
+
self.version = self.cpt.get("version", "v1")
|
83 |
+
if self.version == "v1":
|
84 |
+
if self.if_f0 == 1:
|
85 |
+
self.net_g = SynthesizerTrnMs256NSFsid(
|
86 |
+
*self.cpt["config"], is_half=self.config.is_half
|
87 |
+
)
|
88 |
+
else:
|
89 |
+
self.net_g = SynthesizerTrnMs256NSFsid_nono(*self.cpt["config"])
|
90 |
+
elif self.version == "v2":
|
91 |
+
if self.if_f0 == 1:
|
92 |
+
self.net_g = SynthesizerTrnMs768NSFsid(
|
93 |
+
*self.cpt["config"], is_half=self.config.is_half
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
self.net_g = SynthesizerTrnMs768NSFsid_nono(*self.cpt["config"])
|
97 |
+
del self.net_g, self.cpt
|
98 |
+
if torch.cuda.is_available():
|
99 |
+
torch.cuda.empty_cache()
|
100 |
+
return (
|
101 |
+
{"visible": False, "__type__": "update"},
|
102 |
+
{
|
103 |
+
"visible": True,
|
104 |
+
"value": to_return_protect0,
|
105 |
+
"__type__": "update",
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"visible": True,
|
109 |
+
"value": to_return_protect1,
|
110 |
+
"__type__": "update",
|
111 |
+
},
|
112 |
+
"",
|
113 |
+
"",
|
114 |
+
)
|
115 |
+
#person = f'{os.getenv("weight_root")}/{sid}'
|
116 |
+
person = f'{sid}'
|
117 |
+
#logger.info(f"Loading: {person}")
|
118 |
+
logger.info(f"Loading...")
|
119 |
+
self.cpt = torch.load(person, map_location="cpu")
|
120 |
+
self.tgt_sr = self.cpt["config"][-1]
|
121 |
+
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
122 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
123 |
+
self.version = self.cpt.get("version", "v1")
|
124 |
+
|
125 |
+
synthesizer_class = {
|
126 |
+
("v1", 1): SynthesizerTrnMs256NSFsid,
|
127 |
+
("v1", 0): SynthesizerTrnMs256NSFsid_nono,
|
128 |
+
("v2", 1): SynthesizerTrnMs768NSFsid,
|
129 |
+
("v2", 0): SynthesizerTrnMs768NSFsid_nono,
|
130 |
+
}
|
131 |
+
|
132 |
+
self.net_g = synthesizer_class.get(
|
133 |
+
(self.version, self.if_f0), SynthesizerTrnMs256NSFsid
|
134 |
+
)(*self.cpt["config"], is_half=self.config.is_half)
|
135 |
+
|
136 |
+
del self.net_g.enc_q
|
137 |
+
|
138 |
+
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
|
139 |
+
self.net_g.eval().to(self.config.device)
|
140 |
+
if self.config.is_half:
|
141 |
+
self.net_g = self.net_g.half()
|
142 |
+
else:
|
143 |
+
self.net_g = self.net_g.float()
|
144 |
+
|
145 |
+
self.pipeline = Pipeline(self.tgt_sr, self.config)
|
146 |
+
n_spk = self.cpt["config"][-3]
|
147 |
+
index = {"value": get_index_path_from_model(sid), "__type__": "update"}
|
148 |
+
logger.info("Select index: " + index["value"])
|
149 |
+
|
150 |
+
return (
|
151 |
+
(
|
152 |
+
{"visible": False, "maximum": n_spk, "__type__": "update"},
|
153 |
+
to_return_protect0,
|
154 |
+
to_return_protect1
|
155 |
+
)
|
156 |
+
if to_return_protect
|
157 |
+
else {"visible": False, "maximum": n_spk, "__type__": "update"}
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
def vc_single(
|
162 |
+
self,
|
163 |
+
sid,
|
164 |
+
input_audio_path0,
|
165 |
+
input_audio_path1,
|
166 |
+
f0_up_key,
|
167 |
+
f0_file,
|
168 |
+
f0_method,
|
169 |
+
file_index,
|
170 |
+
file_index2,
|
171 |
+
index_rate,
|
172 |
+
filter_radius,
|
173 |
+
resample_sr,
|
174 |
+
rms_mix_rate,
|
175 |
+
protect,
|
176 |
+
crepe_hop_length,
|
177 |
+
f0_min,
|
178 |
+
note_min,
|
179 |
+
f0_max,
|
180 |
+
note_max,
|
181 |
+
f0_autotune,
|
182 |
+
):
|
183 |
+
global total_time
|
184 |
+
total_time = 0
|
185 |
+
start_time = time.time()
|
186 |
+
if not input_audio_path0 and not input_audio_path1:
|
187 |
+
return "You need to upload an audio", None
|
188 |
+
|
189 |
+
if (not os.path.exists(input_audio_path0)) and (not os.path.exists(os.path.join(now_dir, input_audio_path0))):
|
190 |
+
return "Audio was not properly selected or doesn't exist", None
|
191 |
+
|
192 |
+
input_audio_path1 = input_audio_path1 or input_audio_path0
|
193 |
+
print(f"\nStarting inference for '{os.path.basename(input_audio_path1)}'")
|
194 |
+
print("-------------------")
|
195 |
+
f0_up_key = int(f0_up_key)
|
196 |
+
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
|
197 |
+
f0_min = note_to_hz(note_min) if note_min else 50
|
198 |
+
f0_max = note_to_hz(note_max) if note_max else 1100
|
199 |
+
print(f"Converted Min pitch: freq - {f0_min}\n"
|
200 |
+
f"Converted Max pitch: freq - {f0_max}")
|
201 |
+
else:
|
202 |
+
f0_min = f0_min or 50
|
203 |
+
f0_max = f0_max or 1100
|
204 |
+
try:
|
205 |
+
input_audio_path1 = input_audio_path1 or input_audio_path0
|
206 |
+
print(f"Attempting to load {input_audio_path1}....")
|
207 |
+
audio = load_audio(file=input_audio_path1,
|
208 |
+
sr=16000,
|
209 |
+
DoFormant=rvc_globals.DoFormant,
|
210 |
+
Quefrency=rvc_globals.Quefrency,
|
211 |
+
Timbre=rvc_globals.Timbre)
|
212 |
+
|
213 |
+
audio_max = np.abs(audio).max() / 0.95
|
214 |
+
if audio_max > 1:
|
215 |
+
audio /= audio_max
|
216 |
+
times = [0, 0, 0]
|
217 |
+
|
218 |
+
if self.hubert_model is None:
|
219 |
+
self.hubert_model = load_hubert(self.config)
|
220 |
+
|
221 |
+
try:
|
222 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
223 |
+
except NameError:
|
224 |
+
message = "Model was not properly selected"
|
225 |
+
print(message)
|
226 |
+
return message, None
|
227 |
+
|
228 |
+
file_index = (
|
229 |
+
(
|
230 |
+
file_index.strip(" ")
|
231 |
+
.strip('"')
|
232 |
+
.strip("\n")
|
233 |
+
.strip('"')
|
234 |
+
.strip(" ")
|
235 |
+
.replace("trained", "added")
|
236 |
+
)
|
237 |
+
if file_index != ""
|
238 |
+
else file_index2
|
239 |
+
) # 防止小白写错,自动帮他替换掉
|
240 |
+
|
241 |
+
try:
|
242 |
+
audio_opt = self.pipeline.pipeline(
|
243 |
+
self.hubert_model,
|
244 |
+
self.net_g,
|
245 |
+
sid,
|
246 |
+
audio,
|
247 |
+
input_audio_path1,
|
248 |
+
times,
|
249 |
+
f0_up_key,
|
250 |
+
f0_method,
|
251 |
+
file_index,
|
252 |
+
index_rate,
|
253 |
+
self.if_f0,
|
254 |
+
filter_radius,
|
255 |
+
self.tgt_sr,
|
256 |
+
resample_sr,
|
257 |
+
rms_mix_rate,
|
258 |
+
self.version,
|
259 |
+
protect,
|
260 |
+
crepe_hop_length,
|
261 |
+
f0_autotune,
|
262 |
+
f0_file=f0_file,
|
263 |
+
f0_min=f0_min,
|
264 |
+
f0_max=f0_max
|
265 |
+
)
|
266 |
+
except AssertionError:
|
267 |
+
message = "Mismatching index version detected (v1 with v2, or v2 with v1)."
|
268 |
+
print(message)
|
269 |
+
return message, None
|
270 |
+
except NameError:
|
271 |
+
message = "RVC libraries are still loading. Please try again in a few seconds."
|
272 |
+
print(message)
|
273 |
+
return message, None
|
274 |
+
|
275 |
+
if self.tgt_sr != resample_sr >= 16000:
|
276 |
+
self.tgt_sr = resample_sr
|
277 |
+
index_info = (
|
278 |
+
"Index:\n%s." % file_index
|
279 |
+
if os.path.exists(file_index)
|
280 |
+
else "Index not used."
|
281 |
+
)
|
282 |
+
end_time = time.time()
|
283 |
+
total_time = end_time - start_time
|
284 |
+
|
285 |
+
output_folder = "audio-outputs"
|
286 |
+
os.makedirs(output_folder, exist_ok=True)
|
287 |
+
output_filename = "generated_audio_{}.wav"
|
288 |
+
output_count = 1
|
289 |
+
while True:
|
290 |
+
current_output_path = os.path.join(output_folder, output_filename.format(output_count))
|
291 |
+
if not os.path.exists(current_output_path):
|
292 |
+
break
|
293 |
+
output_count += 1
|
294 |
+
|
295 |
+
wavfile.write(current_output_path, self.tgt_sr, audio_opt)
|
296 |
+
print(f"Generated audio saved to: {current_output_path}")
|
297 |
+
return f"Success.\n {index_info}\nTime:\n npy:{times[0]}, f0:{times[1]}, infer:{times[2]}\nTotal Time: {total_time} seconds", (self.tgt_sr, audio_opt)
|
298 |
+
except:
|
299 |
+
info = traceback.format_exc()
|
300 |
+
logger.warn(info)
|
301 |
+
return info, (None, None)
|
302 |
+
|
303 |
+
def vc_single_dont_save(
|
304 |
+
self,
|
305 |
+
sid,
|
306 |
+
input_audio_path0,
|
307 |
+
input_audio_path1,
|
308 |
+
f0_up_key,
|
309 |
+
f0_file,
|
310 |
+
f0_method,
|
311 |
+
file_index,
|
312 |
+
file_index2,
|
313 |
+
index_rate,
|
314 |
+
filter_radius,
|
315 |
+
resample_sr,
|
316 |
+
rms_mix_rate,
|
317 |
+
protect,
|
318 |
+
crepe_hop_length,
|
319 |
+
f0_min,
|
320 |
+
note_min,
|
321 |
+
f0_max,
|
322 |
+
note_max,
|
323 |
+
f0_autotune,
|
324 |
+
):
|
325 |
+
global total_time
|
326 |
+
total_time = 0
|
327 |
+
start_time = time.time()
|
328 |
+
if not input_audio_path0 and not input_audio_path1:
|
329 |
+
return "You need to upload an audio", None
|
330 |
+
|
331 |
+
if (not os.path.exists(input_audio_path0)) and (not os.path.exists(os.path.join(now_dir, input_audio_path0))):
|
332 |
+
return "Audio was not properly selected or doesn't exist", None
|
333 |
+
|
334 |
+
input_audio_path1 = input_audio_path1 or input_audio_path0
|
335 |
+
print(f"\nStarting inference for '{os.path.basename(input_audio_path1)}'")
|
336 |
+
print("-------------------")
|
337 |
+
f0_up_key = int(f0_up_key)
|
338 |
+
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
|
339 |
+
f0_min = note_to_hz(note_min) if note_min else 50
|
340 |
+
f0_max = note_to_hz(note_max) if note_max else 1100
|
341 |
+
print(f"Converted Min pitch: freq - {f0_min}\n"
|
342 |
+
f"Converted Max pitch: freq - {f0_max}")
|
343 |
+
else:
|
344 |
+
f0_min = f0_min or 50
|
345 |
+
f0_max = f0_max or 1100
|
346 |
+
try:
|
347 |
+
input_audio_path1 = input_audio_path1 or input_audio_path0
|
348 |
+
print(f"Attempting to load {input_audio_path1}....")
|
349 |
+
audio = load_audio(file=input_audio_path1,
|
350 |
+
sr=16000,
|
351 |
+
DoFormant=rvc_globals.DoFormant,
|
352 |
+
Quefrency=rvc_globals.Quefrency,
|
353 |
+
Timbre=rvc_globals.Timbre)
|
354 |
+
|
355 |
+
audio_max = np.abs(audio).max() / 0.95
|
356 |
+
if audio_max > 1:
|
357 |
+
audio /= audio_max
|
358 |
+
times = [0, 0, 0]
|
359 |
+
|
360 |
+
if self.hubert_model is None:
|
361 |
+
self.hubert_model = load_hubert(self.config)
|
362 |
+
|
363 |
+
try:
|
364 |
+
self.if_f0 = self.cpt.get("f0", 1)
|
365 |
+
except NameError:
|
366 |
+
message = "Model was not properly selected"
|
367 |
+
print(message)
|
368 |
+
return message, None
|
369 |
+
|
370 |
+
file_index = (
|
371 |
+
(
|
372 |
+
file_index.strip(" ")
|
373 |
+
.strip('"')
|
374 |
+
.strip("\n")
|
375 |
+
.strip('"')
|
376 |
+
.strip(" ")
|
377 |
+
.replace("trained", "added")
|
378 |
+
)
|
379 |
+
if file_index != ""
|
380 |
+
else file_index2
|
381 |
+
) # 防止小白写错,自动帮他替换掉
|
382 |
+
|
383 |
+
try:
|
384 |
+
audio_opt = self.pipeline.pipeline(
|
385 |
+
self.hubert_model,
|
386 |
+
self.net_g,
|
387 |
+
sid,
|
388 |
+
audio,
|
389 |
+
input_audio_path1,
|
390 |
+
times,
|
391 |
+
f0_up_key,
|
392 |
+
f0_method,
|
393 |
+
file_index,
|
394 |
+
index_rate,
|
395 |
+
self.if_f0,
|
396 |
+
filter_radius,
|
397 |
+
self.tgt_sr,
|
398 |
+
resample_sr,
|
399 |
+
rms_mix_rate,
|
400 |
+
self.version,
|
401 |
+
protect,
|
402 |
+
crepe_hop_length,
|
403 |
+
f0_autotune,
|
404 |
+
f0_file=f0_file,
|
405 |
+
f0_min=f0_min,
|
406 |
+
f0_max=f0_max
|
407 |
+
)
|
408 |
+
except AssertionError:
|
409 |
+
message = "Mismatching index version detected (v1 with v2, or v2 with v1)."
|
410 |
+
print(message)
|
411 |
+
return message, None
|
412 |
+
except NameError:
|
413 |
+
message = "RVC libraries are still loading. Please try again in a few seconds."
|
414 |
+
print(message)
|
415 |
+
return message, None
|
416 |
+
|
417 |
+
if self.tgt_sr != resample_sr >= 16000:
|
418 |
+
self.tgt_sr = resample_sr
|
419 |
+
index_info = (
|
420 |
+
"Index:\n%s." % file_index
|
421 |
+
if os.path.exists(file_index)
|
422 |
+
else "Index not used."
|
423 |
+
)
|
424 |
+
end_time = time.time()
|
425 |
+
total_time = end_time - start_time
|
426 |
+
|
427 |
+
return f"Success.\n {index_info}\nTime:\n npy:{times[0]}, f0:{times[1]}, infer:{times[2]}\nTotal Time: {total_time} seconds", (self.tgt_sr, audio_opt)
|
428 |
+
except:
|
429 |
+
info = traceback.format_exc()
|
430 |
+
logger.warn(info)
|
431 |
+
return info, (None, None)
|
432 |
+
|
433 |
+
|
434 |
+
def vc_multi(
|
435 |
+
self,
|
436 |
+
sid,
|
437 |
+
dir_path,
|
438 |
+
opt_root,
|
439 |
+
paths,
|
440 |
+
f0_up_key,
|
441 |
+
f0_method,
|
442 |
+
file_index,
|
443 |
+
file_index2,
|
444 |
+
index_rate,
|
445 |
+
filter_radius,
|
446 |
+
resample_sr,
|
447 |
+
rms_mix_rate,
|
448 |
+
protect,
|
449 |
+
format1,
|
450 |
+
crepe_hop_length,
|
451 |
+
f0_min,
|
452 |
+
note_min,
|
453 |
+
f0_max,
|
454 |
+
note_max,
|
455 |
+
f0_autotune,
|
456 |
+
):
|
457 |
+
if rvc_globals.NotesOrHertz and f0_method != 'rmvpe':
|
458 |
+
f0_min = note_to_hz(note_min) if note_min else 50
|
459 |
+
f0_max = note_to_hz(note_max) if note_max else 1100
|
460 |
+
print(f"Converted Min pitch: freq - {f0_min}\n"
|
461 |
+
f"Converted Max pitch: freq - {f0_max}")
|
462 |
+
else:
|
463 |
+
f0_min = f0_min or 50
|
464 |
+
f0_max = f0_max or 1100
|
465 |
+
try:
|
466 |
+
dir_path = (
|
467 |
+
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
468 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
469 |
+
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
470 |
+
os.makedirs(opt_root, exist_ok=True)
|
471 |
+
try:
|
472 |
+
if dir_path != "":
|
473 |
+
paths = [
|
474 |
+
os.path.join(dir_path, name) for name in os.listdir(dir_path)
|
475 |
+
]
|
476 |
+
else:
|
477 |
+
paths = [path.name for path in paths]
|
478 |
+
except:
|
479 |
+
traceback.print_exc()
|
480 |
+
paths = [path.name for path in paths]
|
481 |
+
infos = []
|
482 |
+
for path in paths:
|
483 |
+
info, opt = self.vc_single(
|
484 |
+
sid,
|
485 |
+
path,
|
486 |
+
f0_up_key,
|
487 |
+
None,
|
488 |
+
f0_method,
|
489 |
+
file_index,
|
490 |
+
file_index2,
|
491 |
+
# file_big_npy,
|
492 |
+
index_rate,
|
493 |
+
filter_radius,
|
494 |
+
resample_sr,
|
495 |
+
rms_mix_rate,
|
496 |
+
protect,
|
497 |
+
)
|
498 |
+
if "Success" in info:
|
499 |
+
try:
|
500 |
+
tgt_sr, audio_opt = opt
|
501 |
+
if format1 in ["wav", "flac"]:
|
502 |
+
sf.write(
|
503 |
+
"%s/%s.%s"
|
504 |
+
% (opt_root, os.path.basename(path), format1),
|
505 |
+
audio_opt,
|
506 |
+
tgt_sr,
|
507 |
+
)
|
508 |
+
else:
|
509 |
+
path = "%s/%s.%s" % (opt_root, os.path.basename(path), format1)
|
510 |
+
with BytesIO() as wavf:
|
511 |
+
sf.write(
|
512 |
+
wavf,
|
513 |
+
audio_opt,
|
514 |
+
tgt_sr,
|
515 |
+
format="wav"
|
516 |
+
)
|
517 |
+
wavf.seek(0, 0)
|
518 |
+
with open(path, "wb") as outf:
|
519 |
+
wav2(wavf, outf, format1)
|
520 |
+
except:
|
521 |
+
info += traceback.format_exc()
|
522 |
+
infos.append("%s->%s" % (os.path.basename(path), info))
|
523 |
+
yield "\n".join(infos)
|
524 |
+
yield "\n".join(infos)
|
525 |
+
except:
|
526 |
+
yield traceback.format_exc()
|
infer/modules/vc/pipeline.py
ADDED
@@ -0,0 +1,655 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import traceback
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logger = logging.getLogger(__name__)
|
7 |
+
|
8 |
+
from functools import lru_cache
|
9 |
+
from time import time as ttime
|
10 |
+
from torch import Tensor
|
11 |
+
import faiss
|
12 |
+
import librosa
|
13 |
+
import numpy as np
|
14 |
+
import parselmouth
|
15 |
+
import pyworld
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
import torchcrepe
|
19 |
+
from scipy import signal
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
import random
|
23 |
+
now_dir = os.getcwd()
|
24 |
+
sys.path.append(now_dir)
|
25 |
+
import re
|
26 |
+
from functools import partial
|
27 |
+
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
28 |
+
|
29 |
+
input_audio_path2wav = {}
|
30 |
+
from LazyImport import lazyload
|
31 |
+
torchcrepe = lazyload("torchcrepe") # Fork Feature. Crepe algo for training and preprocess
|
32 |
+
torch = lazyload("torch")
|
33 |
+
from infer.lib.rmvpe import RMVPE
|
34 |
+
|
35 |
+
@lru_cache
|
36 |
+
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
37 |
+
audio = input_audio_path2wav[input_audio_path]
|
38 |
+
f0, t = pyworld.harvest(
|
39 |
+
audio,
|
40 |
+
fs=fs,
|
41 |
+
f0_ceil=f0max,
|
42 |
+
f0_floor=f0min,
|
43 |
+
frame_period=frame_period,
|
44 |
+
)
|
45 |
+
f0 = pyworld.stonemask(audio, f0, t, fs)
|
46 |
+
return f0
|
47 |
+
|
48 |
+
|
49 |
+
def change_rms(data1, sr1, data2, sr2, rate): # 1是输入音频,2是输出音频,rate是2的占比
|
50 |
+
# print(data1.max(),data2.max())
|
51 |
+
rms1 = librosa.feature.rms(
|
52 |
+
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
53 |
+
) # 每半秒一个点
|
54 |
+
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
55 |
+
rms1 = torch.from_numpy(rms1)
|
56 |
+
rms1 = F.interpolate(
|
57 |
+
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
58 |
+
).squeeze()
|
59 |
+
rms2 = torch.from_numpy(rms2)
|
60 |
+
rms2 = F.interpolate(
|
61 |
+
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
62 |
+
).squeeze()
|
63 |
+
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
64 |
+
data2 *= (
|
65 |
+
torch.pow(rms1, torch.tensor(1 - rate))
|
66 |
+
* torch.pow(rms2, torch.tensor(rate - 1))
|
67 |
+
).numpy()
|
68 |
+
return data2
|
69 |
+
|
70 |
+
|
71 |
+
class Pipeline(object):
|
72 |
+
def __init__(self, tgt_sr, config):
|
73 |
+
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
74 |
+
config.x_pad,
|
75 |
+
config.x_query,
|
76 |
+
config.x_center,
|
77 |
+
config.x_max,
|
78 |
+
config.is_half,
|
79 |
+
)
|
80 |
+
self.sr = 16000 # hubert输入采样率
|
81 |
+
self.window = 160 # 每帧点数
|
82 |
+
self.t_pad = self.sr * self.x_pad # 每条前后pad时间
|
83 |
+
self.t_pad_tgt = tgt_sr * self.x_pad
|
84 |
+
self.t_pad2 = self.t_pad * 2
|
85 |
+
self.t_query = self.sr * self.x_query # 查询切点前后查询时间
|
86 |
+
self.t_center = self.sr * self.x_center # 查询切点位置
|
87 |
+
self.t_max = self.sr * self.x_max # 免查询时长阈值
|
88 |
+
self.device = config.device
|
89 |
+
self.model_rmvpe = RMVPE("%s/rmvpe.pt" % os.environ["rmvpe_root"], is_half=self.is_half, device=self.device)
|
90 |
+
self.f0_method_dict = {
|
91 |
+
"pm": self.get_pm,
|
92 |
+
"harvest": self.get_harvest,
|
93 |
+
"dio": self.get_dio,
|
94 |
+
"rmvpe": self.get_rmvpe,
|
95 |
+
"rmvpe+": self.get_pitch_dependant_rmvpe,
|
96 |
+
"crepe": self.get_f0_official_crepe_computation,
|
97 |
+
"crepe-tiny": partial(self.get_f0_official_crepe_computation, model='model'),
|
98 |
+
"mangio-crepe": self.get_f0_crepe_computation,
|
99 |
+
"mangio-crepe-tiny": partial(self.get_f0_crepe_computation, model='model'),
|
100 |
+
|
101 |
+
}
|
102 |
+
self.note_dict = [
|
103 |
+
65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
|
104 |
+
92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
|
105 |
+
130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
|
106 |
+
185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
|
107 |
+
261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
|
108 |
+
369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
|
109 |
+
523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
|
110 |
+
739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
|
111 |
+
1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
|
112 |
+
1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
|
113 |
+
2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
|
114 |
+
2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
|
115 |
+
]
|
116 |
+
|
117 |
+
# Fork Feature: Get the best torch device to use for f0 algorithms that require a torch device. Will return the type (torch.device)
|
118 |
+
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
119 |
+
if torch.cuda.is_available():
|
120 |
+
return torch.device(
|
121 |
+
f"cuda:{index % torch.cuda.device_count()}"
|
122 |
+
) # Very fast
|
123 |
+
elif torch.backends.mps.is_available():
|
124 |
+
return torch.device("mps")
|
125 |
+
return torch.device("cpu")
|
126 |
+
|
127 |
+
# Fork Feature: Compute f0 with the crepe method
|
128 |
+
def get_f0_crepe_computation(
|
129 |
+
self,
|
130 |
+
x,
|
131 |
+
f0_min,
|
132 |
+
f0_max,
|
133 |
+
p_len,
|
134 |
+
*args, # 512 before. Hop length changes the speed that the voice jumps to a different dramatic pitch. Lower hop lengths means more pitch accuracy but longer inference time.
|
135 |
+
**kwargs, # Either use crepe-tiny "tiny" or crepe "full". Default is full
|
136 |
+
):
|
137 |
+
x = x.astype(
|
138 |
+
np.float32
|
139 |
+
) # fixes the F.conv2D exception. We needed to convert double to float.
|
140 |
+
x /= np.quantile(np.abs(x), 0.999)
|
141 |
+
torch_device = self.get_optimal_torch_device()
|
142 |
+
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
143 |
+
audio = torch.unsqueeze(audio, dim=0)
|
144 |
+
if audio.ndim == 2 and audio.shape[0] > 1:
|
145 |
+
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
146 |
+
audio = audio.detach()
|
147 |
+
hop_length = kwargs.get('crepe_hop_length', 160)
|
148 |
+
model = kwargs.get('model', 'full')
|
149 |
+
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
150 |
+
pitch: Tensor = torchcrepe.predict(
|
151 |
+
audio,
|
152 |
+
self.sr,
|
153 |
+
hop_length,
|
154 |
+
f0_min,
|
155 |
+
f0_max,
|
156 |
+
model,
|
157 |
+
batch_size=hop_length * 2,
|
158 |
+
device=torch_device,
|
159 |
+
pad=True,
|
160 |
+
)
|
161 |
+
p_len = p_len or x.shape[0] // hop_length
|
162 |
+
# Resize the pitch for final f0
|
163 |
+
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
164 |
+
source[source < 0.001] = np.nan
|
165 |
+
target = np.interp(
|
166 |
+
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
167 |
+
np.arange(0, len(source)),
|
168 |
+
source,
|
169 |
+
)
|
170 |
+
f0 = np.nan_to_num(target)
|
171 |
+
return f0 # Resized f0
|
172 |
+
|
173 |
+
def get_f0_official_crepe_computation(
|
174 |
+
self,
|
175 |
+
x,
|
176 |
+
f0_min,
|
177 |
+
f0_max,
|
178 |
+
*args,
|
179 |
+
**kwargs
|
180 |
+
):
|
181 |
+
# Pick a batch size that doesn't cause memory errors on your gpu
|
182 |
+
batch_size = 512
|
183 |
+
# Compute pitch using first gpu
|
184 |
+
audio = torch.tensor(np.copy(x))[None].float()
|
185 |
+
model = kwargs.get('model', 'full')
|
186 |
+
f0, pd = torchcrepe.predict(
|
187 |
+
audio,
|
188 |
+
self.sr,
|
189 |
+
self.window,
|
190 |
+
f0_min,
|
191 |
+
f0_max,
|
192 |
+
model,
|
193 |
+
batch_size=batch_size,
|
194 |
+
device=self.device,
|
195 |
+
return_periodicity=True,
|
196 |
+
)
|
197 |
+
pd = torchcrepe.filter.median(pd, 3)
|
198 |
+
f0 = torchcrepe.filter.mean(f0, 3)
|
199 |
+
f0[pd < 0.1] = 0
|
200 |
+
f0 = f0[0].cpu().numpy()
|
201 |
+
return f0
|
202 |
+
|
203 |
+
# Fork Feature: Compute pYIN f0 method
|
204 |
+
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
205 |
+
y, sr = librosa.load("saudio/Sidney.wav", self.sr, mono=True)
|
206 |
+
f0, _, _ = librosa.pyin(y, sr=self.sr, fmin=f0_min, fmax=f0_max)
|
207 |
+
f0 = f0[1:] # Get rid of extra first frame
|
208 |
+
return f0
|
209 |
+
|
210 |
+
def get_pm(self, x, p_len, *args, **kwargs):
|
211 |
+
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
|
212 |
+
time_step=160 / 16000,
|
213 |
+
voicing_threshold=0.6,
|
214 |
+
pitch_floor=kwargs.get('f0_min'),
|
215 |
+
pitch_ceiling=kwargs.get('f0_max'),
|
216 |
+
).selected_array["frequency"]
|
217 |
+
|
218 |
+
return np.pad(
|
219 |
+
f0,
|
220 |
+
[[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]],
|
221 |
+
mode="constant"
|
222 |
+
)
|
223 |
+
|
224 |
+
def get_harvest(self, x, *args, **kwargs):
|
225 |
+
f0_spectral = pyworld.harvest(
|
226 |
+
x.astype(np.double),
|
227 |
+
fs=self.sr,
|
228 |
+
f0_ceil=kwargs.get('f0_max'),
|
229 |
+
f0_floor=kwargs.get('f0_min'),
|
230 |
+
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
|
231 |
+
)
|
232 |
+
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
|
233 |
+
|
234 |
+
def get_dio(self, x, *args, **kwargs):
|
235 |
+
f0_spectral = pyworld.dio(
|
236 |
+
x.astype(np.double),
|
237 |
+
fs=self.sr,
|
238 |
+
f0_ceil=kwargs.get('f0_max'),
|
239 |
+
f0_floor=kwargs.get('f0_min'),
|
240 |
+
frame_period=1000 * kwargs.get('hop_length', 160) / self.sr,
|
241 |
+
)
|
242 |
+
return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.sr)
|
243 |
+
|
244 |
+
|
245 |
+
def get_rmvpe(self, x, *args, **kwargs):
|
246 |
+
if not hasattr(self, "model_rmvpe"):
|
247 |
+
from infer.lib.rmvpe import RMVPE
|
248 |
+
|
249 |
+
logger.info(
|
250 |
+
"Loading rmvpe model,%s" % "%s/rmvpe.pt" % os.environ["rmvpe_root"]
|
251 |
+
)
|
252 |
+
self.model_rmvpe = RMVPE(
|
253 |
+
"%s/rmvpe.pt" % os.environ["rmvpe_root"],
|
254 |
+
is_half=self.is_half,
|
255 |
+
device=self.device,
|
256 |
+
)
|
257 |
+
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
258 |
+
|
259 |
+
return f0
|
260 |
+
|
261 |
+
|
262 |
+
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
|
263 |
+
return self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
|
264 |
+
|
265 |
+
def autotune_f0(self, f0):
|
266 |
+
autotuned_f0 = []
|
267 |
+
for freq in f0:
|
268 |
+
closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
|
269 |
+
autotuned_f0.append(random.choice(closest_notes))
|
270 |
+
return np.array(autotuned_f0, np.float64)
|
271 |
+
|
272 |
+
# Fork Feature: Acquire median hybrid f0 estimation calculation
|
273 |
+
def get_f0_hybrid_computation(
|
274 |
+
self,
|
275 |
+
methods_str,
|
276 |
+
input_audio_path,
|
277 |
+
x,
|
278 |
+
f0_min,
|
279 |
+
f0_max,
|
280 |
+
p_len,
|
281 |
+
filter_radius,
|
282 |
+
crepe_hop_length,
|
283 |
+
time_step
|
284 |
+
):
|
285 |
+
# Get various f0 methods from input to use in the computation stack
|
286 |
+
params = {'x': x, 'p_len': p_len, 'f0_min': f0_min,
|
287 |
+
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
|
288 |
+
'crepe_hop_length': crepe_hop_length, 'model': "full"
|
289 |
+
}
|
290 |
+
methods_str = re.search('hybrid\[(.+)\]', methods_str)
|
291 |
+
if methods_str: # Ensure a match was found
|
292 |
+
methods = [method.strip() for method in methods_str.group(1).split('+')]
|
293 |
+
f0_computation_stack = []
|
294 |
+
|
295 |
+
print(f"Calculating f0 pitch estimations for methods: {str(methods)}")
|
296 |
+
x = x.astype(np.float32)
|
297 |
+
x /= np.quantile(np.abs(x), 0.999)
|
298 |
+
# Get f0 calculations for all methods specified
|
299 |
+
|
300 |
+
for method in methods:
|
301 |
+
if method not in self.f0_method_dict:
|
302 |
+
print(f"Method {method} not found.")
|
303 |
+
continue
|
304 |
+
f0 = self.f0_method_dict[method](**params)
|
305 |
+
if method == 'harvest' and filter_radius > 2:
|
306 |
+
f0 = signal.medfilt(f0, 3)
|
307 |
+
f0 = f0[1:] # Get rid of first frame.
|
308 |
+
f0_computation_stack.append(f0)
|
309 |
+
|
310 |
+
for fc in f0_computation_stack:
|
311 |
+
print(len(fc))
|
312 |
+
|
313 |
+
print(f"Calculating hybrid median f0 from the stack of: {str(methods)}")
|
314 |
+
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
315 |
+
return f0_median_hybrid
|
316 |
+
|
317 |
+
def get_f0(
|
318 |
+
self,
|
319 |
+
input_audio_path,
|
320 |
+
x,
|
321 |
+
p_len,
|
322 |
+
f0_up_key,
|
323 |
+
f0_method,
|
324 |
+
filter_radius,
|
325 |
+
crepe_hop_length,
|
326 |
+
f0_autotune,
|
327 |
+
inp_f0=None,
|
328 |
+
f0_min=50,
|
329 |
+
f0_max=1100,
|
330 |
+
):
|
331 |
+
global input_audio_path2wav
|
332 |
+
time_step = self.window / self.sr * 1000
|
333 |
+
f0_min = 50
|
334 |
+
f0_max = 1100
|
335 |
+
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
336 |
+
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
337 |
+
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
|
338 |
+
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
|
339 |
+
'crepe_hop_length': crepe_hop_length, 'model': "full"
|
340 |
+
}
|
341 |
+
|
342 |
+
if "hybrid" in f0_method:
|
343 |
+
# Perform hybrid median pitch estimation
|
344 |
+
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
345 |
+
f0 = self.get_f0_hybrid_computation(
|
346 |
+
f0_method,+
|
347 |
+
input_audio_path,
|
348 |
+
x,
|
349 |
+
f0_min,
|
350 |
+
f0_max,
|
351 |
+
p_len,
|
352 |
+
filter_radius,
|
353 |
+
crepe_hop_length,
|
354 |
+
time_step,
|
355 |
+
)
|
356 |
+
else:
|
357 |
+
f0 = self.f0_method_dict[f0_method](**params)
|
358 |
+
|
359 |
+
if "privateuseone" in str(self.device): # clean ortruntime memory
|
360 |
+
del self.model_rmvpe.model
|
361 |
+
del self.model_rmvpe
|
362 |
+
logger.info("Cleaning ortruntime memory")
|
363 |
+
|
364 |
+
if f0_autotune:
|
365 |
+
f0 = self.autotune_f0(f0)
|
366 |
+
|
367 |
+
f0 *= pow(2, f0_up_key / 12)
|
368 |
+
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
369 |
+
tf0 = self.sr // self.window # 每秒f0点数
|
370 |
+
if inp_f0 is not None:
|
371 |
+
delta_t = np.round(
|
372 |
+
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
373 |
+
).astype("int16")
|
374 |
+
replace_f0 = np.interp(
|
375 |
+
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
376 |
+
)
|
377 |
+
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
378 |
+
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
379 |
+
:shape
|
380 |
+
]
|
381 |
+
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
382 |
+
f0bak = f0.copy()
|
383 |
+
f0_mel = 1127 * np.log(1 + f0 / 700)
|
384 |
+
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
385 |
+
f0_mel_max - f0_mel_min
|
386 |
+
) + 1
|
387 |
+
f0_mel[f0_mel <= 1] = 1
|
388 |
+
f0_mel[f0_mel > 255] = 255
|
389 |
+
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
390 |
+
return f0_coarse, f0bak # 1-0
|
391 |
+
|
392 |
+
def vc(
|
393 |
+
self,
|
394 |
+
model,
|
395 |
+
net_g,
|
396 |
+
sid,
|
397 |
+
audio0,
|
398 |
+
pitch,
|
399 |
+
pitchf,
|
400 |
+
times,
|
401 |
+
index,
|
402 |
+
big_npy,
|
403 |
+
index_rate,
|
404 |
+
version,
|
405 |
+
protect,
|
406 |
+
): # ,file_index,file_big_npy
|
407 |
+
feats = torch.from_numpy(audio0)
|
408 |
+
if self.is_half:
|
409 |
+
feats = feats.half()
|
410 |
+
else:
|
411 |
+
feats = feats.float()
|
412 |
+
if feats.dim() == 2: # double channels
|
413 |
+
feats = feats.mean(-1)
|
414 |
+
assert feats.dim() == 1, feats.dim()
|
415 |
+
feats = feats.view(1, -1)
|
416 |
+
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
417 |
+
|
418 |
+
inputs = {
|
419 |
+
"source": feats.to(self.device),
|
420 |
+
"padding_mask": padding_mask,
|
421 |
+
"output_layer": 9 if version == "v1" else 12,
|
422 |
+
}
|
423 |
+
t0 = ttime()
|
424 |
+
with torch.no_grad():
|
425 |
+
logits = model.extract_features(**inputs)
|
426 |
+
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
427 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
428 |
+
feats0 = feats.clone()
|
429 |
+
if (
|
430 |
+
not isinstance(index, type(None))
|
431 |
+
and not isinstance(big_npy, type(None))
|
432 |
+
and index_rate != 0
|
433 |
+
):
|
434 |
+
npy = feats[0].cpu().numpy()
|
435 |
+
if self.is_half:
|
436 |
+
npy = npy.astype("float32")
|
437 |
+
|
438 |
+
# _, I = index.search(npy, 1)
|
439 |
+
# npy = big_npy[I.squeeze()]
|
440 |
+
|
441 |
+
score, ix = index.search(npy, k=8)
|
442 |
+
weight = np.square(1 / score)
|
443 |
+
weight /= weight.sum(axis=1, keepdims=True)
|
444 |
+
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
445 |
+
|
446 |
+
if self.is_half:
|
447 |
+
npy = npy.astype("float16")
|
448 |
+
feats = (
|
449 |
+
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
450 |
+
+ (1 - index_rate) * feats
|
451 |
+
)
|
452 |
+
|
453 |
+
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
454 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
455 |
+
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
456 |
+
0, 2, 1
|
457 |
+
)
|
458 |
+
t1 = ttime()
|
459 |
+
p_len = audio0.shape[0] // self.window
|
460 |
+
if feats.shape[1] < p_len:
|
461 |
+
p_len = feats.shape[1]
|
462 |
+
if pitch is not None and pitchf is not None:
|
463 |
+
pitch = pitch[:, :p_len]
|
464 |
+
pitchf = pitchf[:, :p_len]
|
465 |
+
|
466 |
+
if protect < 0.5 and pitch is not None and pitchf is not None:
|
467 |
+
pitchff = pitchf.clone()
|
468 |
+
pitchff[pitchf > 0] = 1
|
469 |
+
pitchff[pitchf < 1] = protect
|
470 |
+
pitchff = pitchff.unsqueeze(-1)
|
471 |
+
feats = feats * pitchff + feats0 * (1 - pitchff)
|
472 |
+
feats = feats.to(feats0.dtype)
|
473 |
+
p_len = torch.tensor([p_len], device=self.device).long()
|
474 |
+
with torch.no_grad():
|
475 |
+
hasp = pitch is not None and pitchf is not None
|
476 |
+
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
|
477 |
+
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
|
478 |
+
del hasp, arg
|
479 |
+
del feats, p_len, padding_mask
|
480 |
+
if torch.cuda.is_available():
|
481 |
+
torch.cuda.empty_cache()
|
482 |
+
t2 = ttime()
|
483 |
+
times[0] += t1 - t0
|
484 |
+
times[2] += t2 - t1
|
485 |
+
return audio1
|
486 |
+
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
|
487 |
+
t = t // window * window
|
488 |
+
if if_f0 == 1:
|
489 |
+
return self.vc(
|
490 |
+
model,
|
491 |
+
net_g,
|
492 |
+
sid,
|
493 |
+
audio_pad[s : t + t_pad_tgt + window],
|
494 |
+
pitch[:, s // window : (t + t_pad_tgt) // window],
|
495 |
+
pitchf[:, s // window : (t + t_pad_tgt) // window],
|
496 |
+
times,
|
497 |
+
index,
|
498 |
+
big_npy,
|
499 |
+
index_rate,
|
500 |
+
version,
|
501 |
+
protect,
|
502 |
+
)[t_pad_tgt : -t_pad_tgt]
|
503 |
+
else:
|
504 |
+
return self.vc(
|
505 |
+
model,
|
506 |
+
net_g,
|
507 |
+
sid,
|
508 |
+
audio_pad[s : t + t_pad_tgt + window],
|
509 |
+
None,
|
510 |
+
None,
|
511 |
+
times,
|
512 |
+
index,
|
513 |
+
big_npy,
|
514 |
+
index_rate,
|
515 |
+
version,
|
516 |
+
protect,
|
517 |
+
)[t_pad_tgt : -t_pad_tgt]
|
518 |
+
|
519 |
+
|
520 |
+
def pipeline(
|
521 |
+
self,
|
522 |
+
model,
|
523 |
+
net_g,
|
524 |
+
sid,
|
525 |
+
audio,
|
526 |
+
input_audio_path,
|
527 |
+
times,
|
528 |
+
f0_up_key,
|
529 |
+
f0_method,
|
530 |
+
file_index,
|
531 |
+
index_rate,
|
532 |
+
if_f0,
|
533 |
+
filter_radius,
|
534 |
+
tgt_sr,
|
535 |
+
resample_sr,
|
536 |
+
rms_mix_rate,
|
537 |
+
version,
|
538 |
+
protect,
|
539 |
+
crepe_hop_length,
|
540 |
+
f0_autotune,
|
541 |
+
f0_file=None,
|
542 |
+
f0_min=50,
|
543 |
+
f0_max=1100
|
544 |
+
):
|
545 |
+
if (
|
546 |
+
file_index != ""
|
547 |
+
# and file_big_npy != ""
|
548 |
+
# and os.path.exists(file_big_npy) == True
|
549 |
+
and os.path.exists(file_index)
|
550 |
+
and index_rate != 0
|
551 |
+
):
|
552 |
+
try:
|
553 |
+
index = faiss.read_index(file_index)
|
554 |
+
# big_npy = np.load(file_big_npy)
|
555 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
556 |
+
except:
|
557 |
+
traceback.print_exc()
|
558 |
+
index = big_npy = None
|
559 |
+
else:
|
560 |
+
index = big_npy = None
|
561 |
+
audio = signal.filtfilt(bh, ah, audio)
|
562 |
+
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
563 |
+
opt_ts = []
|
564 |
+
if audio_pad.shape[0] > self.t_max:
|
565 |
+
audio_sum = np.zeros_like(audio)
|
566 |
+
for i in range(self.window):
|
567 |
+
audio_sum += audio_pad[i : i - self.window]
|
568 |
+
for t in range(self.t_center, audio.shape[0], self.t_center):
|
569 |
+
opt_ts.append(
|
570 |
+
t
|
571 |
+
- self.t_query
|
572 |
+
+ np.where(
|
573 |
+
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
574 |
+
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
575 |
+
)[0][0]
|
576 |
+
)
|
577 |
+
s = 0
|
578 |
+
audio_opt = []
|
579 |
+
t = None
|
580 |
+
t1 = ttime()
|
581 |
+
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
582 |
+
p_len = audio_pad.shape[0] // self.window
|
583 |
+
inp_f0 = None
|
584 |
+
if hasattr(f0_file, "name"):
|
585 |
+
try:
|
586 |
+
with open(f0_file.name, "r") as f:
|
587 |
+
lines = f.read().strip("\n").split("\n")
|
588 |
+
inp_f0 = []
|
589 |
+
for line in lines:
|
590 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
591 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
592 |
+
except:
|
593 |
+
traceback.print_exc()
|
594 |
+
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
595 |
+
pitch, pitchf = None, None
|
596 |
+
if if_f0:
|
597 |
+
pitch, pitchf = self.get_f0(
|
598 |
+
input_audio_path,
|
599 |
+
audio_pad,
|
600 |
+
p_len,
|
601 |
+
f0_up_key,
|
602 |
+
f0_method,
|
603 |
+
filter_radius,
|
604 |
+
crepe_hop_length,
|
605 |
+
f0_autotune,
|
606 |
+
inp_f0,
|
607 |
+
f0_min,
|
608 |
+
f0_max
|
609 |
+
)
|
610 |
+
pitch = pitch[:p_len]
|
611 |
+
pitchf = pitchf[:p_len]
|
612 |
+
if self.device == "mps" or "xpu" in self.device:
|
613 |
+
pitchf = pitchf.astype(np.float32)
|
614 |
+
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
615 |
+
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
616 |
+
t2 = ttime()
|
617 |
+
times[1] += t2 - t1
|
618 |
+
|
619 |
+
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
|
620 |
+
for i, t in enumerate(opt_ts):
|
621 |
+
t = t // self.window * self.window
|
622 |
+
start = s
|
623 |
+
end = t + self.t_pad2 + self.window
|
624 |
+
audio_slice = audio_pad[start:end]
|
625 |
+
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
|
626 |
+
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
|
627 |
+
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
|
628 |
+
s = t
|
629 |
+
pbar.update(1)
|
630 |
+
pbar.refresh()
|
631 |
+
|
632 |
+
audio_slice = audio_pad[t:]
|
633 |
+
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
|
634 |
+
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
|
635 |
+
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
|
636 |
+
|
637 |
+
audio_opt = np.concatenate(audio_opt)
|
638 |
+
if rms_mix_rate != 1:
|
639 |
+
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
640 |
+
if tgt_sr != resample_sr >= 16000:
|
641 |
+
audio_opt = librosa.resample(
|
642 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
643 |
+
)
|
644 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
645 |
+
max_int16 = 32768
|
646 |
+
if audio_max > 1:
|
647 |
+
max_int16 /= audio_max
|
648 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
649 |
+
del pitch, pitchf, sid
|
650 |
+
if torch.cuda.is_available():
|
651 |
+
torch.cuda.empty_cache()
|
652 |
+
|
653 |
+
print("Returning completed audio...")
|
654 |
+
print("-------------------")
|
655 |
+
return audio_opt
|
infer/modules/vc/utils.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
from fairseq import checkpoint_utils
|
4 |
+
|
5 |
+
|
6 |
+
def get_index_path_from_model(sid):
|
7 |
+
sid0strip = re.sub(r'\.pth|\.onnx$', '', sid)
|
8 |
+
sid0name = os.path.split(sid0strip)[-1] # Extract only the name, not the directory
|
9 |
+
|
10 |
+
# Check if the sid0strip has the specific ending format _eXXX_sXXX
|
11 |
+
if re.match(r'.+_e\d+_s\d+$', sid0name):
|
12 |
+
base_model_name = sid0name.rsplit('_', 2)[0]
|
13 |
+
else:
|
14 |
+
base_model_name = sid0name
|
15 |
+
|
16 |
+
return next(
|
17 |
+
(
|
18 |
+
f
|
19 |
+
for f in [
|
20 |
+
os.path.join(root, name)
|
21 |
+
for root, _, files in os.walk(os.getenv("index_root"), topdown=False)
|
22 |
+
for name in files
|
23 |
+
if name.endswith(".index") and "trained" not in name
|
24 |
+
]
|
25 |
+
if base_model_name in f
|
26 |
+
),
|
27 |
+
"",
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def load_hubert(config):
|
32 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
33 |
+
["assets/hubert/hubert_base.pt"],
|
34 |
+
suffix="",
|
35 |
+
)
|
36 |
+
hubert_model = models[0]
|
37 |
+
hubert_model = hubert_model.to(config.device)
|
38 |
+
if config.is_half:
|
39 |
+
hubert_model = hubert_model.half()
|
40 |
+
else:
|
41 |
+
hubert_model = hubert_model.float()
|
42 |
+
return hubert_model.eval()
|
lib/globals/globals.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DoFormant: bool = False
|
2 |
+
Quefrency: float = 8.0
|
3 |
+
Timbre: float = 1.2
|
4 |
+
|
5 |
+
NotesOrHertz: bool = False
|
lib/infer_pack/attentions.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import math
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from lib.infer_pack import commons
|
9 |
+
from lib.infer_pack import modules
|
10 |
+
from lib.infer_pack.modules import LayerNorm
|
11 |
+
|
12 |
+
|
13 |
+
class Encoder(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
hidden_channels,
|
17 |
+
filter_channels,
|
18 |
+
n_heads,
|
19 |
+
n_layers,
|
20 |
+
kernel_size=1,
|
21 |
+
p_dropout=0.0,
|
22 |
+
window_size=10,
|
23 |
+
**kwargs
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.hidden_channels = hidden_channels
|
27 |
+
self.filter_channels = filter_channels
|
28 |
+
self.n_heads = n_heads
|
29 |
+
self.n_layers = n_layers
|
30 |
+
self.kernel_size = kernel_size
|
31 |
+
self.p_dropout = p_dropout
|
32 |
+
self.window_size = window_size
|
33 |
+
|
34 |
+
self.drop = nn.Dropout(p_dropout)
|
35 |
+
self.attn_layers = nn.ModuleList()
|
36 |
+
self.norm_layers_1 = nn.ModuleList()
|
37 |
+
self.ffn_layers = nn.ModuleList()
|
38 |
+
self.norm_layers_2 = nn.ModuleList()
|
39 |
+
for i in range(self.n_layers):
|
40 |
+
self.attn_layers.append(
|
41 |
+
MultiHeadAttention(
|
42 |
+
hidden_channels,
|
43 |
+
hidden_channels,
|
44 |
+
n_heads,
|
45 |
+
p_dropout=p_dropout,
|
46 |
+
window_size=window_size,
|
47 |
+
)
|
48 |
+
)
|
49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
50 |
+
self.ffn_layers.append(
|
51 |
+
FFN(
|
52 |
+
hidden_channels,
|
53 |
+
hidden_channels,
|
54 |
+
filter_channels,
|
55 |
+
kernel_size,
|
56 |
+
p_dropout=p_dropout,
|
57 |
+
)
|
58 |
+
)
|
59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
60 |
+
|
61 |
+
def forward(self, x, x_mask):
|
62 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
63 |
+
x = x * x_mask
|
64 |
+
for i in range(self.n_layers):
|
65 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
66 |
+
y = self.drop(y)
|
67 |
+
x = self.norm_layers_1[i](x + y)
|
68 |
+
|
69 |
+
y = self.ffn_layers[i](x, x_mask)
|
70 |
+
y = self.drop(y)
|
71 |
+
x = self.norm_layers_2[i](x + y)
|
72 |
+
x = x * x_mask
|
73 |
+
return x
|
74 |
+
|
75 |
+
|
76 |
+
class Decoder(nn.Module):
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
hidden_channels,
|
80 |
+
filter_channels,
|
81 |
+
n_heads,
|
82 |
+
n_layers,
|
83 |
+
kernel_size=1,
|
84 |
+
p_dropout=0.0,
|
85 |
+
proximal_bias=False,
|
86 |
+
proximal_init=True,
|
87 |
+
**kwargs
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
self.hidden_channels = hidden_channels
|
91 |
+
self.filter_channels = filter_channels
|
92 |
+
self.n_heads = n_heads
|
93 |
+
self.n_layers = n_layers
|
94 |
+
self.kernel_size = kernel_size
|
95 |
+
self.p_dropout = p_dropout
|
96 |
+
self.proximal_bias = proximal_bias
|
97 |
+
self.proximal_init = proximal_init
|
98 |
+
|
99 |
+
self.drop = nn.Dropout(p_dropout)
|
100 |
+
self.self_attn_layers = nn.ModuleList()
|
101 |
+
self.norm_layers_0 = nn.ModuleList()
|
102 |
+
self.encdec_attn_layers = nn.ModuleList()
|
103 |
+
self.norm_layers_1 = nn.ModuleList()
|
104 |
+
self.ffn_layers = nn.ModuleList()
|
105 |
+
self.norm_layers_2 = nn.ModuleList()
|
106 |
+
for i in range(self.n_layers):
|
107 |
+
self.self_attn_layers.append(
|
108 |
+
MultiHeadAttention(
|
109 |
+
hidden_channels,
|
110 |
+
hidden_channels,
|
111 |
+
n_heads,
|
112 |
+
p_dropout=p_dropout,
|
113 |
+
proximal_bias=proximal_bias,
|
114 |
+
proximal_init=proximal_init,
|
115 |
+
)
|
116 |
+
)
|
117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
118 |
+
self.encdec_attn_layers.append(
|
119 |
+
MultiHeadAttention(
|
120 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
121 |
+
)
|
122 |
+
)
|
123 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
124 |
+
self.ffn_layers.append(
|
125 |
+
FFN(
|
126 |
+
hidden_channels,
|
127 |
+
hidden_channels,
|
128 |
+
filter_channels,
|
129 |
+
kernel_size,
|
130 |
+
p_dropout=p_dropout,
|
131 |
+
causal=True,
|
132 |
+
)
|
133 |
+
)
|
134 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
135 |
+
|
136 |
+
def forward(self, x, x_mask, h, h_mask):
|
137 |
+
"""
|
138 |
+
x: decoder input
|
139 |
+
h: encoder output
|
140 |
+
"""
|
141 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
142 |
+
device=x.device, dtype=x.dtype
|
143 |
+
)
|
144 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
145 |
+
x = x * x_mask
|
146 |
+
for i in range(self.n_layers):
|
147 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
148 |
+
y = self.drop(y)
|
149 |
+
x = self.norm_layers_0[i](x + y)
|
150 |
+
|
151 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
152 |
+
y = self.drop(y)
|
153 |
+
x = self.norm_layers_1[i](x + y)
|
154 |
+
|
155 |
+
y = self.ffn_layers[i](x, x_mask)
|
156 |
+
y = self.drop(y)
|
157 |
+
x = self.norm_layers_2[i](x + y)
|
158 |
+
x = x * x_mask
|
159 |
+
return x
|
160 |
+
|
161 |
+
|
162 |
+
class MultiHeadAttention(nn.Module):
|
163 |
+
def __init__(
|
164 |
+
self,
|
165 |
+
channels,
|
166 |
+
out_channels,
|
167 |
+
n_heads,
|
168 |
+
p_dropout=0.0,
|
169 |
+
window_size=None,
|
170 |
+
heads_share=True,
|
171 |
+
block_length=None,
|
172 |
+
proximal_bias=False,
|
173 |
+
proximal_init=False,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
assert channels % n_heads == 0
|
177 |
+
|
178 |
+
self.channels = channels
|
179 |
+
self.out_channels = out_channels
|
180 |
+
self.n_heads = n_heads
|
181 |
+
self.p_dropout = p_dropout
|
182 |
+
self.window_size = window_size
|
183 |
+
self.heads_share = heads_share
|
184 |
+
self.block_length = block_length
|
185 |
+
self.proximal_bias = proximal_bias
|
186 |
+
self.proximal_init = proximal_init
|
187 |
+
self.attn = None
|
188 |
+
|
189 |
+
self.k_channels = channels // n_heads
|
190 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
191 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
192 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
193 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
194 |
+
self.drop = nn.Dropout(p_dropout)
|
195 |
+
|
196 |
+
if window_size is not None:
|
197 |
+
n_heads_rel = 1 if heads_share else n_heads
|
198 |
+
rel_stddev = self.k_channels**-0.5
|
199 |
+
self.emb_rel_k = nn.Parameter(
|
200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
201 |
+
* rel_stddev
|
202 |
+
)
|
203 |
+
self.emb_rel_v = nn.Parameter(
|
204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
205 |
+
* rel_stddev
|
206 |
+
)
|
207 |
+
|
208 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
209 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
210 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
211 |
+
if proximal_init:
|
212 |
+
with torch.no_grad():
|
213 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
214 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
215 |
+
|
216 |
+
def forward(self, x, c, attn_mask=None):
|
217 |
+
q = self.conv_q(x)
|
218 |
+
k = self.conv_k(c)
|
219 |
+
v = self.conv_v(c)
|
220 |
+
|
221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
222 |
+
|
223 |
+
x = self.conv_o(x)
|
224 |
+
return x
|
225 |
+
|
226 |
+
def attention(self, query, key, value, mask=None):
|
227 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
228 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
229 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
230 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
231 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
232 |
+
|
233 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
234 |
+
if self.window_size is not None:
|
235 |
+
assert (
|
236 |
+
t_s == t_t
|
237 |
+
), "Relative attention is only available for self-attention."
|
238 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
239 |
+
rel_logits = self._matmul_with_relative_keys(
|
240 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
241 |
+
)
|
242 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
243 |
+
scores = scores + scores_local
|
244 |
+
if self.proximal_bias:
|
245 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
246 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
247 |
+
device=scores.device, dtype=scores.dtype
|
248 |
+
)
|
249 |
+
if mask is not None:
|
250 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
251 |
+
if self.block_length is not None:
|
252 |
+
assert (
|
253 |
+
t_s == t_t
|
254 |
+
), "Local attention is only available for self-attention."
|
255 |
+
block_mask = (
|
256 |
+
torch.ones_like(scores)
|
257 |
+
.triu(-self.block_length)
|
258 |
+
.tril(self.block_length)
|
259 |
+
)
|
260 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
261 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
262 |
+
p_attn = self.drop(p_attn)
|
263 |
+
output = torch.matmul(p_attn, value)
|
264 |
+
if self.window_size is not None:
|
265 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
266 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
267 |
+
self.emb_rel_v, t_s
|
268 |
+
)
|
269 |
+
output = output + self._matmul_with_relative_values(
|
270 |
+
relative_weights, value_relative_embeddings
|
271 |
+
)
|
272 |
+
output = (
|
273 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
274 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
275 |
+
return output, p_attn
|
276 |
+
|
277 |
+
def _matmul_with_relative_values(self, x, y):
|
278 |
+
"""
|
279 |
+
x: [b, h, l, m]
|
280 |
+
y: [h or 1, m, d]
|
281 |
+
ret: [b, h, l, d]
|
282 |
+
"""
|
283 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
284 |
+
return ret
|
285 |
+
|
286 |
+
def _matmul_with_relative_keys(self, x, y):
|
287 |
+
"""
|
288 |
+
x: [b, h, l, d]
|
289 |
+
y: [h or 1, m, d]
|
290 |
+
ret: [b, h, l, m]
|
291 |
+
"""
|
292 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
293 |
+
return ret
|
294 |
+
|
295 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
296 |
+
max_relative_position = 2 * self.window_size + 1
|
297 |
+
# Pad first before slice to avoid using cond ops.
|
298 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
299 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
300 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
301 |
+
if pad_length > 0:
|
302 |
+
padded_relative_embeddings = F.pad(
|
303 |
+
relative_embeddings,
|
304 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
305 |
+
)
|
306 |
+
else:
|
307 |
+
padded_relative_embeddings = relative_embeddings
|
308 |
+
used_relative_embeddings = padded_relative_embeddings[
|
309 |
+
:, slice_start_position:slice_end_position
|
310 |
+
]
|
311 |
+
return used_relative_embeddings
|
312 |
+
|
313 |
+
def _relative_position_to_absolute_position(self, x):
|
314 |
+
"""
|
315 |
+
x: [b, h, l, 2*l-1]
|
316 |
+
ret: [b, h, l, l]
|
317 |
+
"""
|
318 |
+
batch, heads, length, _ = x.size()
|
319 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
320 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
321 |
+
|
322 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
323 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
324 |
+
x_flat = F.pad(
|
325 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
326 |
+
)
|
327 |
+
|
328 |
+
# Reshape and slice out the padded elements.
|
329 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
330 |
+
:, :, :length, length - 1 :
|
331 |
+
]
|
332 |
+
return x_final
|
333 |
+
|
334 |
+
def _absolute_position_to_relative_position(self, x):
|
335 |
+
"""
|
336 |
+
x: [b, h, l, l]
|
337 |
+
ret: [b, h, l, 2*l-1]
|
338 |
+
"""
|
339 |
+
batch, heads, length, _ = x.size()
|
340 |
+
# padd along column
|
341 |
+
x = F.pad(
|
342 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
343 |
+
)
|
344 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
345 |
+
# add 0's in the beginning that will skew the elements after reshape
|
346 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
347 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
348 |
+
return x_final
|
349 |
+
|
350 |
+
def _attention_bias_proximal(self, length):
|
351 |
+
"""Bias for self-attention to encourage attention to close positions.
|
352 |
+
Args:
|
353 |
+
length: an integer scalar.
|
354 |
+
Returns:
|
355 |
+
a Tensor with shape [1, 1, length, length]
|
356 |
+
"""
|
357 |
+
r = torch.arange(length, dtype=torch.float32)
|
358 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
359 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
360 |
+
|
361 |
+
|
362 |
+
class FFN(nn.Module):
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
in_channels,
|
366 |
+
out_channels,
|
367 |
+
filter_channels,
|
368 |
+
kernel_size,
|
369 |
+
p_dropout=0.0,
|
370 |
+
activation=None,
|
371 |
+
causal=False,
|
372 |
+
):
|
373 |
+
super().__init__()
|
374 |
+
self.in_channels = in_channels
|
375 |
+
self.out_channels = out_channels
|
376 |
+
self.filter_channels = filter_channels
|
377 |
+
self.kernel_size = kernel_size
|
378 |
+
self.p_dropout = p_dropout
|
379 |
+
self.activation = activation
|
380 |
+
self.causal = causal
|
381 |
+
|
382 |
+
if causal:
|
383 |
+
self.padding = self._causal_padding
|
384 |
+
else:
|
385 |
+
self.padding = self._same_padding
|
386 |
+
|
387 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
388 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
389 |
+
self.drop = nn.Dropout(p_dropout)
|
390 |
+
|
391 |
+
def forward(self, x, x_mask):
|
392 |
+
x = self.conv_1(self.padding(x * x_mask))
|
393 |
+
if self.activation == "gelu":
|
394 |
+
x = x * torch.sigmoid(1.702 * x)
|
395 |
+
else:
|
396 |
+
x = torch.relu(x)
|
397 |
+
x = self.drop(x)
|
398 |
+
x = self.conv_2(self.padding(x * x_mask))
|
399 |
+
return x * x_mask
|
400 |
+
|
401 |
+
def _causal_padding(self, x):
|
402 |
+
if self.kernel_size == 1:
|
403 |
+
return x
|
404 |
+
pad_l = self.kernel_size - 1
|
405 |
+
pad_r = 0
|
406 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
407 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
408 |
+
return x
|
409 |
+
|
410 |
+
def _same_padding(self, x):
|
411 |
+
if self.kernel_size == 1:
|
412 |
+
return x
|
413 |
+
pad_l = (self.kernel_size - 1) // 2
|
414 |
+
pad_r = self.kernel_size // 2
|
415 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
416 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
417 |
+
return x
|
lib/infer_pack/commons.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def init_weights(m, mean=0.0, std=0.01):
|
9 |
+
classname = m.__class__.__name__
|
10 |
+
if classname.find("Conv") != -1:
|
11 |
+
m.weight.data.normal_(mean, std)
|
12 |
+
|
13 |
+
|
14 |
+
def get_padding(kernel_size, dilation=1):
|
15 |
+
return int((kernel_size * dilation - dilation) / 2)
|
16 |
+
|
17 |
+
|
18 |
+
def convert_pad_shape(pad_shape):
|
19 |
+
l = pad_shape[::-1]
|
20 |
+
pad_shape = [item for sublist in l for item in sublist]
|
21 |
+
return pad_shape
|
22 |
+
|
23 |
+
|
24 |
+
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
25 |
+
"""KL(P||Q)"""
|
26 |
+
kl = (logs_q - logs_p) - 0.5
|
27 |
+
kl += (
|
28 |
+
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
29 |
+
)
|
30 |
+
return kl
|
31 |
+
|
32 |
+
|
33 |
+
def rand_gumbel(shape):
|
34 |
+
"""Sample from the Gumbel distribution, protect from overflows."""
|
35 |
+
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
36 |
+
return -torch.log(-torch.log(uniform_samples))
|
37 |
+
|
38 |
+
|
39 |
+
def rand_gumbel_like(x):
|
40 |
+
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
41 |
+
return g
|
42 |
+
|
43 |
+
|
44 |
+
def slice_segments(x, ids_str, segment_size=4):
|
45 |
+
ret = torch.zeros_like(x[:, :, :segment_size])
|
46 |
+
for i in range(x.size(0)):
|
47 |
+
idx_str = ids_str[i]
|
48 |
+
idx_end = idx_str + segment_size
|
49 |
+
ret[i] = x[i, :, idx_str:idx_end]
|
50 |
+
return ret
|
51 |
+
|
52 |
+
|
53 |
+
def slice_segments2(x, ids_str, segment_size=4):
|
54 |
+
ret = torch.zeros_like(x[:, :segment_size])
|
55 |
+
for i in range(x.size(0)):
|
56 |
+
idx_str = ids_str[i]
|
57 |
+
idx_end = idx_str + segment_size
|
58 |
+
ret[i] = x[i, idx_str:idx_end]
|
59 |
+
return ret
|
60 |
+
|
61 |
+
|
62 |
+
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
63 |
+
b, d, t = x.size()
|
64 |
+
if x_lengths is None:
|
65 |
+
x_lengths = t
|
66 |
+
ids_str_max = x_lengths - segment_size + 1
|
67 |
+
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
68 |
+
ret = slice_segments(x, ids_str, segment_size)
|
69 |
+
return ret, ids_str
|
70 |
+
|
71 |
+
|
72 |
+
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
73 |
+
position = torch.arange(length, dtype=torch.float)
|
74 |
+
num_timescales = channels // 2
|
75 |
+
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (
|
76 |
+
num_timescales - 1
|
77 |
+
)
|
78 |
+
inv_timescales = min_timescale * torch.exp(
|
79 |
+
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
80 |
+
)
|
81 |
+
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
82 |
+
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
83 |
+
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
84 |
+
signal = signal.view(1, channels, length)
|
85 |
+
return signal
|
86 |
+
|
87 |
+
|
88 |
+
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
89 |
+
b, channels, length = x.size()
|
90 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
91 |
+
return x + signal.to(dtype=x.dtype, device=x.device)
|
92 |
+
|
93 |
+
|
94 |
+
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
95 |
+
b, channels, length = x.size()
|
96 |
+
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
97 |
+
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
98 |
+
|
99 |
+
|
100 |
+
def subsequent_mask(length):
|
101 |
+
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
102 |
+
return mask
|
103 |
+
|
104 |
+
|
105 |
+
@torch.jit.script
|
106 |
+
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
107 |
+
n_channels_int = n_channels[0]
|
108 |
+
in_act = input_a + input_b
|
109 |
+
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
110 |
+
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
111 |
+
acts = t_act * s_act
|
112 |
+
return acts
|
113 |
+
|
114 |
+
|
115 |
+
def convert_pad_shape(pad_shape):
|
116 |
+
l = pad_shape[::-1]
|
117 |
+
pad_shape = [item for sublist in l for item in sublist]
|
118 |
+
return pad_shape
|
119 |
+
|
120 |
+
|
121 |
+
def shift_1d(x):
|
122 |
+
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
def sequence_mask(length, max_length=None):
|
127 |
+
if max_length is None:
|
128 |
+
max_length = length.max()
|
129 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
130 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
131 |
+
|
132 |
+
|
133 |
+
def generate_path(duration, mask):
|
134 |
+
"""
|
135 |
+
duration: [b, 1, t_x]
|
136 |
+
mask: [b, 1, t_y, t_x]
|
137 |
+
"""
|
138 |
+
device = duration.device
|
139 |
+
|
140 |
+
b, _, t_y, t_x = mask.shape
|
141 |
+
cum_duration = torch.cumsum(duration, -1)
|
142 |
+
|
143 |
+
cum_duration_flat = cum_duration.view(b * t_x)
|
144 |
+
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
145 |
+
path = path.view(b, t_x, t_y)
|
146 |
+
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
147 |
+
path = path.unsqueeze(1).transpose(2, 3) * mask
|
148 |
+
return path
|
149 |
+
|
150 |
+
|
151 |
+
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
152 |
+
if isinstance(parameters, torch.Tensor):
|
153 |
+
parameters = [parameters]
|
154 |
+
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
155 |
+
norm_type = float(norm_type)
|
156 |
+
if clip_value is not None:
|
157 |
+
clip_value = float(clip_value)
|
158 |
+
|
159 |
+
total_norm = 0
|
160 |
+
for p in parameters:
|
161 |
+
param_norm = p.grad.data.norm(norm_type)
|
162 |
+
total_norm += param_norm.item() ** norm_type
|
163 |
+
if clip_value is not None:
|
164 |
+
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
165 |
+
total_norm = total_norm ** (1.0 / norm_type)
|
166 |
+
return total_norm
|
lib/infer_pack/models.py
ADDED
@@ -0,0 +1,1144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math, pdb, os
|
2 |
+
from time import time as ttime
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from lib.infer_pack import modules
|
7 |
+
from lib.infer_pack import attentions
|
8 |
+
from lib.infer_pack import commons
|
9 |
+
from lib.infer_pack.commons import init_weights, get_padding
|
10 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from lib.infer_pack.commons import init_weights
|
13 |
+
import numpy as np
|
14 |
+
from lib.infer_pack import commons
|
15 |
+
|
16 |
+
|
17 |
+
class TextEncoder256(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
out_channels,
|
21 |
+
hidden_channels,
|
22 |
+
filter_channels,
|
23 |
+
n_heads,
|
24 |
+
n_layers,
|
25 |
+
kernel_size,
|
26 |
+
p_dropout,
|
27 |
+
f0=True,
|
28 |
+
):
|
29 |
+
super().__init__()
|
30 |
+
self.out_channels = out_channels
|
31 |
+
self.hidden_channels = hidden_channels
|
32 |
+
self.filter_channels = filter_channels
|
33 |
+
self.n_heads = n_heads
|
34 |
+
self.n_layers = n_layers
|
35 |
+
self.kernel_size = kernel_size
|
36 |
+
self.p_dropout = p_dropout
|
37 |
+
self.emb_phone = nn.Linear(256, hidden_channels)
|
38 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
39 |
+
if f0 == True:
|
40 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
41 |
+
self.encoder = attentions.Encoder(
|
42 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
43 |
+
)
|
44 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
45 |
+
|
46 |
+
def forward(self, phone, pitch, lengths):
|
47 |
+
if pitch == None:
|
48 |
+
x = self.emb_phone(phone)
|
49 |
+
else:
|
50 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
51 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
52 |
+
x = self.lrelu(x)
|
53 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
54 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
55 |
+
x.dtype
|
56 |
+
)
|
57 |
+
x = self.encoder(x * x_mask, x_mask)
|
58 |
+
stats = self.proj(x) * x_mask
|
59 |
+
|
60 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
61 |
+
return m, logs, x_mask
|
62 |
+
|
63 |
+
|
64 |
+
class TextEncoder768(nn.Module):
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
out_channels,
|
68 |
+
hidden_channels,
|
69 |
+
filter_channels,
|
70 |
+
n_heads,
|
71 |
+
n_layers,
|
72 |
+
kernel_size,
|
73 |
+
p_dropout,
|
74 |
+
f0=True,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
self.out_channels = out_channels
|
78 |
+
self.hidden_channels = hidden_channels
|
79 |
+
self.filter_channels = filter_channels
|
80 |
+
self.n_heads = n_heads
|
81 |
+
self.n_layers = n_layers
|
82 |
+
self.kernel_size = kernel_size
|
83 |
+
self.p_dropout = p_dropout
|
84 |
+
self.emb_phone = nn.Linear(768, hidden_channels)
|
85 |
+
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
86 |
+
if f0 == True:
|
87 |
+
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
88 |
+
self.encoder = attentions.Encoder(
|
89 |
+
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
90 |
+
)
|
91 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
92 |
+
|
93 |
+
def forward(self, phone, pitch, lengths):
|
94 |
+
if pitch == None:
|
95 |
+
x = self.emb_phone(phone)
|
96 |
+
else:
|
97 |
+
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
98 |
+
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
99 |
+
x = self.lrelu(x)
|
100 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
101 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
102 |
+
x.dtype
|
103 |
+
)
|
104 |
+
x = self.encoder(x * x_mask, x_mask)
|
105 |
+
stats = self.proj(x) * x_mask
|
106 |
+
|
107 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
108 |
+
return m, logs, x_mask
|
109 |
+
|
110 |
+
|
111 |
+
class ResidualCouplingBlock(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
channels,
|
115 |
+
hidden_channels,
|
116 |
+
kernel_size,
|
117 |
+
dilation_rate,
|
118 |
+
n_layers,
|
119 |
+
n_flows=4,
|
120 |
+
gin_channels=0,
|
121 |
+
):
|
122 |
+
super().__init__()
|
123 |
+
self.channels = channels
|
124 |
+
self.hidden_channels = hidden_channels
|
125 |
+
self.kernel_size = kernel_size
|
126 |
+
self.dilation_rate = dilation_rate
|
127 |
+
self.n_layers = n_layers
|
128 |
+
self.n_flows = n_flows
|
129 |
+
self.gin_channels = gin_channels
|
130 |
+
|
131 |
+
self.flows = nn.ModuleList()
|
132 |
+
for i in range(n_flows):
|
133 |
+
self.flows.append(
|
134 |
+
modules.ResidualCouplingLayer(
|
135 |
+
channels,
|
136 |
+
hidden_channels,
|
137 |
+
kernel_size,
|
138 |
+
dilation_rate,
|
139 |
+
n_layers,
|
140 |
+
gin_channels=gin_channels,
|
141 |
+
mean_only=True,
|
142 |
+
)
|
143 |
+
)
|
144 |
+
self.flows.append(modules.Flip())
|
145 |
+
|
146 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
147 |
+
if not reverse:
|
148 |
+
for flow in self.flows:
|
149 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
150 |
+
else:
|
151 |
+
for flow in reversed(self.flows):
|
152 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
153 |
+
return x
|
154 |
+
|
155 |
+
def remove_weight_norm(self):
|
156 |
+
for i in range(self.n_flows):
|
157 |
+
self.flows[i * 2].remove_weight_norm()
|
158 |
+
|
159 |
+
|
160 |
+
class PosteriorEncoder(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
in_channels,
|
164 |
+
out_channels,
|
165 |
+
hidden_channels,
|
166 |
+
kernel_size,
|
167 |
+
dilation_rate,
|
168 |
+
n_layers,
|
169 |
+
gin_channels=0,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
self.in_channels = in_channels
|
173 |
+
self.out_channels = out_channels
|
174 |
+
self.hidden_channels = hidden_channels
|
175 |
+
self.kernel_size = kernel_size
|
176 |
+
self.dilation_rate = dilation_rate
|
177 |
+
self.n_layers = n_layers
|
178 |
+
self.gin_channels = gin_channels
|
179 |
+
|
180 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
181 |
+
self.enc = modules.WN(
|
182 |
+
hidden_channels,
|
183 |
+
kernel_size,
|
184 |
+
dilation_rate,
|
185 |
+
n_layers,
|
186 |
+
gin_channels=gin_channels,
|
187 |
+
)
|
188 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
189 |
+
|
190 |
+
def forward(self, x, x_lengths, g=None):
|
191 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
192 |
+
x.dtype
|
193 |
+
)
|
194 |
+
x = self.pre(x) * x_mask
|
195 |
+
x = self.enc(x, x_mask, g=g)
|
196 |
+
stats = self.proj(x) * x_mask
|
197 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
198 |
+
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
199 |
+
return z, m, logs, x_mask
|
200 |
+
|
201 |
+
def remove_weight_norm(self):
|
202 |
+
self.enc.remove_weight_norm()
|
203 |
+
|
204 |
+
|
205 |
+
class Generator(torch.nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
initial_channel,
|
209 |
+
resblock,
|
210 |
+
resblock_kernel_sizes,
|
211 |
+
resblock_dilation_sizes,
|
212 |
+
upsample_rates,
|
213 |
+
upsample_initial_channel,
|
214 |
+
upsample_kernel_sizes,
|
215 |
+
gin_channels=0,
|
216 |
+
):
|
217 |
+
super(Generator, self).__init__()
|
218 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
219 |
+
self.num_upsamples = len(upsample_rates)
|
220 |
+
self.conv_pre = Conv1d(
|
221 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
222 |
+
)
|
223 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
224 |
+
|
225 |
+
self.ups = nn.ModuleList()
|
226 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
227 |
+
self.ups.append(
|
228 |
+
weight_norm(
|
229 |
+
ConvTranspose1d(
|
230 |
+
upsample_initial_channel // (2**i),
|
231 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
232 |
+
k,
|
233 |
+
u,
|
234 |
+
padding=(k - u) // 2,
|
235 |
+
)
|
236 |
+
)
|
237 |
+
)
|
238 |
+
|
239 |
+
self.resblocks = nn.ModuleList()
|
240 |
+
for i in range(len(self.ups)):
|
241 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
242 |
+
for j, (k, d) in enumerate(
|
243 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
244 |
+
):
|
245 |
+
self.resblocks.append(resblock(ch, k, d))
|
246 |
+
|
247 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
248 |
+
self.ups.apply(init_weights)
|
249 |
+
|
250 |
+
if gin_channels != 0:
|
251 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
252 |
+
|
253 |
+
def forward(self, x, g=None):
|
254 |
+
x = self.conv_pre(x)
|
255 |
+
if g is not None:
|
256 |
+
x = x + self.cond(g)
|
257 |
+
|
258 |
+
for i in range(self.num_upsamples):
|
259 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
260 |
+
x = self.ups[i](x)
|
261 |
+
xs = None
|
262 |
+
for j in range(self.num_kernels):
|
263 |
+
if xs is None:
|
264 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
265 |
+
else:
|
266 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
267 |
+
x = xs / self.num_kernels
|
268 |
+
x = F.leaky_relu(x)
|
269 |
+
x = self.conv_post(x)
|
270 |
+
x = torch.tanh(x)
|
271 |
+
|
272 |
+
return x
|
273 |
+
|
274 |
+
def remove_weight_norm(self):
|
275 |
+
for l in self.ups:
|
276 |
+
remove_weight_norm(l)
|
277 |
+
for l in self.resblocks:
|
278 |
+
l.remove_weight_norm()
|
279 |
+
|
280 |
+
|
281 |
+
class SineGen(torch.nn.Module):
|
282 |
+
"""Definition of sine generator
|
283 |
+
SineGen(samp_rate, harmonic_num = 0,
|
284 |
+
sine_amp = 0.1, noise_std = 0.003,
|
285 |
+
voiced_threshold = 0,
|
286 |
+
flag_for_pulse=False)
|
287 |
+
samp_rate: sampling rate in Hz
|
288 |
+
harmonic_num: number of harmonic overtones (default 0)
|
289 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
290 |
+
noise_std: std of Gaussian noise (default 0.003)
|
291 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
292 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
293 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
294 |
+
segment is always sin(np.pi) or cos(0)
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
samp_rate,
|
300 |
+
harmonic_num=0,
|
301 |
+
sine_amp=0.1,
|
302 |
+
noise_std=0.003,
|
303 |
+
voiced_threshold=0,
|
304 |
+
flag_for_pulse=False,
|
305 |
+
):
|
306 |
+
super(SineGen, self).__init__()
|
307 |
+
self.sine_amp = sine_amp
|
308 |
+
self.noise_std = noise_std
|
309 |
+
self.harmonic_num = harmonic_num
|
310 |
+
self.dim = self.harmonic_num + 1
|
311 |
+
self.sampling_rate = samp_rate
|
312 |
+
self.voiced_threshold = voiced_threshold
|
313 |
+
|
314 |
+
def _f02uv(self, f0):
|
315 |
+
# generate uv signal
|
316 |
+
uv = torch.ones_like(f0)
|
317 |
+
uv = uv * (f0 > self.voiced_threshold)
|
318 |
+
if uv.device.type == "privateuseone": # for DirectML
|
319 |
+
uv = uv.float()
|
320 |
+
return uv
|
321 |
+
|
322 |
+
def forward(self, f0, upp):
|
323 |
+
"""sine_tensor, uv = forward(f0)
|
324 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
325 |
+
f0 for unvoiced steps should be 0
|
326 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
327 |
+
output uv: tensor(batchsize=1, length, 1)
|
328 |
+
"""
|
329 |
+
with torch.no_grad():
|
330 |
+
f0 = f0[:, None].transpose(1, 2)
|
331 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
332 |
+
# fundamental component
|
333 |
+
f0_buf[:, :, 0] = f0[:, :, 0]
|
334 |
+
for idx in np.arange(self.harmonic_num):
|
335 |
+
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
336 |
+
idx + 2
|
337 |
+
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
338 |
+
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
339 |
+
rand_ini = torch.rand(
|
340 |
+
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
341 |
+
)
|
342 |
+
rand_ini[:, 0] = 0
|
343 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
344 |
+
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
345 |
+
tmp_over_one *= upp
|
346 |
+
tmp_over_one = F.interpolate(
|
347 |
+
tmp_over_one.transpose(2, 1),
|
348 |
+
scale_factor=upp,
|
349 |
+
mode="linear",
|
350 |
+
align_corners=True,
|
351 |
+
).transpose(2, 1)
|
352 |
+
rad_values = F.interpolate(
|
353 |
+
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
354 |
+
).transpose(
|
355 |
+
2, 1
|
356 |
+
) #######
|
357 |
+
tmp_over_one %= 1
|
358 |
+
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
359 |
+
cumsum_shift = torch.zeros_like(rad_values)
|
360 |
+
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
361 |
+
sine_waves = torch.sin(
|
362 |
+
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
363 |
+
)
|
364 |
+
sine_waves = sine_waves * self.sine_amp
|
365 |
+
uv = self._f02uv(f0)
|
366 |
+
uv = F.interpolate(
|
367 |
+
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
368 |
+
).transpose(2, 1)
|
369 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
370 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
371 |
+
sine_waves = sine_waves * uv + noise
|
372 |
+
return sine_waves, uv, noise
|
373 |
+
|
374 |
+
|
375 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
376 |
+
"""SourceModule for hn-nsf
|
377 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
378 |
+
add_noise_std=0.003, voiced_threshod=0)
|
379 |
+
sampling_rate: sampling_rate in Hz
|
380 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
381 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
382 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
383 |
+
note that amplitude of noise in unvoiced is decided
|
384 |
+
by sine_amp
|
385 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
386 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
387 |
+
F0_sampled (batchsize, length, 1)
|
388 |
+
Sine_source (batchsize, length, 1)
|
389 |
+
noise_source (batchsize, length 1)
|
390 |
+
uv (batchsize, length, 1)
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self,
|
395 |
+
sampling_rate,
|
396 |
+
harmonic_num=0,
|
397 |
+
sine_amp=0.1,
|
398 |
+
add_noise_std=0.003,
|
399 |
+
voiced_threshod=0,
|
400 |
+
is_half=True,
|
401 |
+
):
|
402 |
+
super(SourceModuleHnNSF, self).__init__()
|
403 |
+
|
404 |
+
self.sine_amp = sine_amp
|
405 |
+
self.noise_std = add_noise_std
|
406 |
+
self.is_half = is_half
|
407 |
+
# to produce sine waveforms
|
408 |
+
self.l_sin_gen = SineGen(
|
409 |
+
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
410 |
+
)
|
411 |
+
|
412 |
+
# to merge source harmonics into a single excitation
|
413 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
414 |
+
self.l_tanh = torch.nn.Tanh()
|
415 |
+
|
416 |
+
def forward(self, x, upp=None):
|
417 |
+
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
418 |
+
if self.is_half:
|
419 |
+
sine_wavs = sine_wavs.half()
|
420 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
421 |
+
return sine_merge, None, None # noise, uv
|
422 |
+
|
423 |
+
|
424 |
+
class GeneratorNSF(torch.nn.Module):
|
425 |
+
def __init__(
|
426 |
+
self,
|
427 |
+
initial_channel,
|
428 |
+
resblock,
|
429 |
+
resblock_kernel_sizes,
|
430 |
+
resblock_dilation_sizes,
|
431 |
+
upsample_rates,
|
432 |
+
upsample_initial_channel,
|
433 |
+
upsample_kernel_sizes,
|
434 |
+
gin_channels,
|
435 |
+
sr,
|
436 |
+
is_half=False,
|
437 |
+
):
|
438 |
+
super(GeneratorNSF, self).__init__()
|
439 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
440 |
+
self.num_upsamples = len(upsample_rates)
|
441 |
+
|
442 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
443 |
+
self.m_source = SourceModuleHnNSF(
|
444 |
+
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
445 |
+
)
|
446 |
+
self.noise_convs = nn.ModuleList()
|
447 |
+
self.conv_pre = Conv1d(
|
448 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
449 |
+
)
|
450 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
451 |
+
|
452 |
+
self.ups = nn.ModuleList()
|
453 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
454 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
455 |
+
self.ups.append(
|
456 |
+
weight_norm(
|
457 |
+
ConvTranspose1d(
|
458 |
+
upsample_initial_channel // (2**i),
|
459 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
460 |
+
k,
|
461 |
+
u,
|
462 |
+
padding=(k - u) // 2,
|
463 |
+
)
|
464 |
+
)
|
465 |
+
)
|
466 |
+
if i + 1 < len(upsample_rates):
|
467 |
+
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
468 |
+
self.noise_convs.append(
|
469 |
+
Conv1d(
|
470 |
+
1,
|
471 |
+
c_cur,
|
472 |
+
kernel_size=stride_f0 * 2,
|
473 |
+
stride=stride_f0,
|
474 |
+
padding=stride_f0 // 2,
|
475 |
+
)
|
476 |
+
)
|
477 |
+
else:
|
478 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
479 |
+
|
480 |
+
self.resblocks = nn.ModuleList()
|
481 |
+
for i in range(len(self.ups)):
|
482 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
483 |
+
for j, (k, d) in enumerate(
|
484 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
485 |
+
):
|
486 |
+
self.resblocks.append(resblock(ch, k, d))
|
487 |
+
|
488 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
489 |
+
self.ups.apply(init_weights)
|
490 |
+
|
491 |
+
if gin_channels != 0:
|
492 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
493 |
+
|
494 |
+
self.upp = np.prod(upsample_rates)
|
495 |
+
|
496 |
+
def forward(self, x, f0, g=None):
|
497 |
+
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
498 |
+
har_source = har_source.transpose(1, 2)
|
499 |
+
x = self.conv_pre(x)
|
500 |
+
if g is not None:
|
501 |
+
x = x + self.cond(g)
|
502 |
+
|
503 |
+
for i in range(self.num_upsamples):
|
504 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
505 |
+
x = self.ups[i](x)
|
506 |
+
x_source = self.noise_convs[i](har_source)
|
507 |
+
x = x + x_source
|
508 |
+
xs = None
|
509 |
+
for j in range(self.num_kernels):
|
510 |
+
if xs is None:
|
511 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
512 |
+
else:
|
513 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
514 |
+
x = xs / self.num_kernels
|
515 |
+
x = F.leaky_relu(x)
|
516 |
+
x = self.conv_post(x)
|
517 |
+
x = torch.tanh(x)
|
518 |
+
return x
|
519 |
+
|
520 |
+
def remove_weight_norm(self):
|
521 |
+
for l in self.ups:
|
522 |
+
remove_weight_norm(l)
|
523 |
+
for l in self.resblocks:
|
524 |
+
l.remove_weight_norm()
|
525 |
+
|
526 |
+
|
527 |
+
sr2sr = {
|
528 |
+
"32k": 32000,
|
529 |
+
"40k": 40000,
|
530 |
+
"48k": 48000,
|
531 |
+
}
|
532 |
+
|
533 |
+
|
534 |
+
class SynthesizerTrnMs256NSFsid(nn.Module):
|
535 |
+
def __init__(
|
536 |
+
self,
|
537 |
+
spec_channels,
|
538 |
+
segment_size,
|
539 |
+
inter_channels,
|
540 |
+
hidden_channels,
|
541 |
+
filter_channels,
|
542 |
+
n_heads,
|
543 |
+
n_layers,
|
544 |
+
kernel_size,
|
545 |
+
p_dropout,
|
546 |
+
resblock,
|
547 |
+
resblock_kernel_sizes,
|
548 |
+
resblock_dilation_sizes,
|
549 |
+
upsample_rates,
|
550 |
+
upsample_initial_channel,
|
551 |
+
upsample_kernel_sizes,
|
552 |
+
spk_embed_dim,
|
553 |
+
gin_channels,
|
554 |
+
sr,
|
555 |
+
**kwargs
|
556 |
+
):
|
557 |
+
super().__init__()
|
558 |
+
if type(sr) == type("strr"):
|
559 |
+
sr = sr2sr[sr]
|
560 |
+
self.spec_channels = spec_channels
|
561 |
+
self.inter_channels = inter_channels
|
562 |
+
self.hidden_channels = hidden_channels
|
563 |
+
self.filter_channels = filter_channels
|
564 |
+
self.n_heads = n_heads
|
565 |
+
self.n_layers = n_layers
|
566 |
+
self.kernel_size = kernel_size
|
567 |
+
self.p_dropout = p_dropout
|
568 |
+
self.resblock = resblock
|
569 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
570 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
571 |
+
self.upsample_rates = upsample_rates
|
572 |
+
self.upsample_initial_channel = upsample_initial_channel
|
573 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
574 |
+
self.segment_size = segment_size
|
575 |
+
self.gin_channels = gin_channels
|
576 |
+
# self.hop_length = hop_length#
|
577 |
+
self.spk_embed_dim = spk_embed_dim
|
578 |
+
self.enc_p = TextEncoder256(
|
579 |
+
inter_channels,
|
580 |
+
hidden_channels,
|
581 |
+
filter_channels,
|
582 |
+
n_heads,
|
583 |
+
n_layers,
|
584 |
+
kernel_size,
|
585 |
+
p_dropout,
|
586 |
+
)
|
587 |
+
self.dec = GeneratorNSF(
|
588 |
+
inter_channels,
|
589 |
+
resblock,
|
590 |
+
resblock_kernel_sizes,
|
591 |
+
resblock_dilation_sizes,
|
592 |
+
upsample_rates,
|
593 |
+
upsample_initial_channel,
|
594 |
+
upsample_kernel_sizes,
|
595 |
+
gin_channels=gin_channels,
|
596 |
+
sr=sr,
|
597 |
+
is_half=kwargs["is_half"],
|
598 |
+
)
|
599 |
+
self.enc_q = PosteriorEncoder(
|
600 |
+
spec_channels,
|
601 |
+
inter_channels,
|
602 |
+
hidden_channels,
|
603 |
+
5,
|
604 |
+
1,
|
605 |
+
16,
|
606 |
+
gin_channels=gin_channels,
|
607 |
+
)
|
608 |
+
self.flow = ResidualCouplingBlock(
|
609 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
610 |
+
)
|
611 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
612 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
613 |
+
|
614 |
+
def remove_weight_norm(self):
|
615 |
+
self.dec.remove_weight_norm()
|
616 |
+
self.flow.remove_weight_norm()
|
617 |
+
self.enc_q.remove_weight_norm()
|
618 |
+
|
619 |
+
def forward(
|
620 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
621 |
+
): # 这里ds是id,[bs,1]
|
622 |
+
# print(1,pitch.shape)#[bs,t]
|
623 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
624 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
625 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
626 |
+
z_p = self.flow(z, y_mask, g=g)
|
627 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
628 |
+
z, y_lengths, self.segment_size
|
629 |
+
)
|
630 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
631 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
632 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
633 |
+
o = self.dec(z_slice, pitchf, g=g)
|
634 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
635 |
+
|
636 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
637 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
638 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
639 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
640 |
+
if rate:
|
641 |
+
head = int(z_p.shape[2] * rate)
|
642 |
+
z_p = z_p[:, :, -head:]
|
643 |
+
x_mask = x_mask[:, :, -head:]
|
644 |
+
nsff0 = nsff0[:, -head:]
|
645 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
646 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
647 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
648 |
+
|
649 |
+
|
650 |
+
class SynthesizerTrnMs768NSFsid(nn.Module):
|
651 |
+
def __init__(
|
652 |
+
self,
|
653 |
+
spec_channels,
|
654 |
+
segment_size,
|
655 |
+
inter_channels,
|
656 |
+
hidden_channels,
|
657 |
+
filter_channels,
|
658 |
+
n_heads,
|
659 |
+
n_layers,
|
660 |
+
kernel_size,
|
661 |
+
p_dropout,
|
662 |
+
resblock,
|
663 |
+
resblock_kernel_sizes,
|
664 |
+
resblock_dilation_sizes,
|
665 |
+
upsample_rates,
|
666 |
+
upsample_initial_channel,
|
667 |
+
upsample_kernel_sizes,
|
668 |
+
spk_embed_dim,
|
669 |
+
gin_channels,
|
670 |
+
sr,
|
671 |
+
**kwargs
|
672 |
+
):
|
673 |
+
super().__init__()
|
674 |
+
if type(sr) == type("strr"):
|
675 |
+
sr = sr2sr[sr]
|
676 |
+
self.spec_channels = spec_channels
|
677 |
+
self.inter_channels = inter_channels
|
678 |
+
self.hidden_channels = hidden_channels
|
679 |
+
self.filter_channels = filter_channels
|
680 |
+
self.n_heads = n_heads
|
681 |
+
self.n_layers = n_layers
|
682 |
+
self.kernel_size = kernel_size
|
683 |
+
self.p_dropout = p_dropout
|
684 |
+
self.resblock = resblock
|
685 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
686 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
687 |
+
self.upsample_rates = upsample_rates
|
688 |
+
self.upsample_initial_channel = upsample_initial_channel
|
689 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
690 |
+
self.segment_size = segment_size
|
691 |
+
self.gin_channels = gin_channels
|
692 |
+
# self.hop_length = hop_length#
|
693 |
+
self.spk_embed_dim = spk_embed_dim
|
694 |
+
self.enc_p = TextEncoder768(
|
695 |
+
inter_channels,
|
696 |
+
hidden_channels,
|
697 |
+
filter_channels,
|
698 |
+
n_heads,
|
699 |
+
n_layers,
|
700 |
+
kernel_size,
|
701 |
+
p_dropout,
|
702 |
+
)
|
703 |
+
self.dec = GeneratorNSF(
|
704 |
+
inter_channels,
|
705 |
+
resblock,
|
706 |
+
resblock_kernel_sizes,
|
707 |
+
resblock_dilation_sizes,
|
708 |
+
upsample_rates,
|
709 |
+
upsample_initial_channel,
|
710 |
+
upsample_kernel_sizes,
|
711 |
+
gin_channels=gin_channels,
|
712 |
+
sr=sr,
|
713 |
+
is_half=kwargs["is_half"],
|
714 |
+
)
|
715 |
+
self.enc_q = PosteriorEncoder(
|
716 |
+
spec_channels,
|
717 |
+
inter_channels,
|
718 |
+
hidden_channels,
|
719 |
+
5,
|
720 |
+
1,
|
721 |
+
16,
|
722 |
+
gin_channels=gin_channels,
|
723 |
+
)
|
724 |
+
self.flow = ResidualCouplingBlock(
|
725 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
726 |
+
)
|
727 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
728 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
729 |
+
|
730 |
+
def remove_weight_norm(self):
|
731 |
+
self.dec.remove_weight_norm()
|
732 |
+
self.flow.remove_weight_norm()
|
733 |
+
self.enc_q.remove_weight_norm()
|
734 |
+
|
735 |
+
def forward(
|
736 |
+
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
737 |
+
): # 这里ds是id,[bs,1]
|
738 |
+
# print(1,pitch.shape)#[bs,t]
|
739 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
740 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
741 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
742 |
+
z_p = self.flow(z, y_mask, g=g)
|
743 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
744 |
+
z, y_lengths, self.segment_size
|
745 |
+
)
|
746 |
+
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
747 |
+
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
748 |
+
# print(-2,pitchf.shape,z_slice.shape)
|
749 |
+
o = self.dec(z_slice, pitchf, g=g)
|
750 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
751 |
+
|
752 |
+
def infer(self, phone, phone_lengths, pitch, nsff0, sid, rate=None):
|
753 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
754 |
+
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
755 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
756 |
+
if rate:
|
757 |
+
head = int(z_p.shape[2] * rate)
|
758 |
+
z_p = z_p[:, :, -head:]
|
759 |
+
x_mask = x_mask[:, :, -head:]
|
760 |
+
nsff0 = nsff0[:, -head:]
|
761 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
762 |
+
o = self.dec(z * x_mask, nsff0, g=g)
|
763 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
764 |
+
|
765 |
+
|
766 |
+
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
767 |
+
def __init__(
|
768 |
+
self,
|
769 |
+
spec_channels,
|
770 |
+
segment_size,
|
771 |
+
inter_channels,
|
772 |
+
hidden_channels,
|
773 |
+
filter_channels,
|
774 |
+
n_heads,
|
775 |
+
n_layers,
|
776 |
+
kernel_size,
|
777 |
+
p_dropout,
|
778 |
+
resblock,
|
779 |
+
resblock_kernel_sizes,
|
780 |
+
resblock_dilation_sizes,
|
781 |
+
upsample_rates,
|
782 |
+
upsample_initial_channel,
|
783 |
+
upsample_kernel_sizes,
|
784 |
+
spk_embed_dim,
|
785 |
+
gin_channels,
|
786 |
+
sr=None,
|
787 |
+
**kwargs
|
788 |
+
):
|
789 |
+
super().__init__()
|
790 |
+
self.spec_channels = spec_channels
|
791 |
+
self.inter_channels = inter_channels
|
792 |
+
self.hidden_channels = hidden_channels
|
793 |
+
self.filter_channels = filter_channels
|
794 |
+
self.n_heads = n_heads
|
795 |
+
self.n_layers = n_layers
|
796 |
+
self.kernel_size = kernel_size
|
797 |
+
self.p_dropout = p_dropout
|
798 |
+
self.resblock = resblock
|
799 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
800 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
801 |
+
self.upsample_rates = upsample_rates
|
802 |
+
self.upsample_initial_channel = upsample_initial_channel
|
803 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
804 |
+
self.segment_size = segment_size
|
805 |
+
self.gin_channels = gin_channels
|
806 |
+
# self.hop_length = hop_length#
|
807 |
+
self.spk_embed_dim = spk_embed_dim
|
808 |
+
self.enc_p = TextEncoder256(
|
809 |
+
inter_channels,
|
810 |
+
hidden_channels,
|
811 |
+
filter_channels,
|
812 |
+
n_heads,
|
813 |
+
n_layers,
|
814 |
+
kernel_size,
|
815 |
+
p_dropout,
|
816 |
+
f0=False,
|
817 |
+
)
|
818 |
+
self.dec = Generator(
|
819 |
+
inter_channels,
|
820 |
+
resblock,
|
821 |
+
resblock_kernel_sizes,
|
822 |
+
resblock_dilation_sizes,
|
823 |
+
upsample_rates,
|
824 |
+
upsample_initial_channel,
|
825 |
+
upsample_kernel_sizes,
|
826 |
+
gin_channels=gin_channels,
|
827 |
+
)
|
828 |
+
self.enc_q = PosteriorEncoder(
|
829 |
+
spec_channels,
|
830 |
+
inter_channels,
|
831 |
+
hidden_channels,
|
832 |
+
5,
|
833 |
+
1,
|
834 |
+
16,
|
835 |
+
gin_channels=gin_channels,
|
836 |
+
)
|
837 |
+
self.flow = ResidualCouplingBlock(
|
838 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
839 |
+
)
|
840 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
841 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
842 |
+
|
843 |
+
def remove_weight_norm(self):
|
844 |
+
self.dec.remove_weight_norm()
|
845 |
+
self.flow.remove_weight_norm()
|
846 |
+
self.enc_q.remove_weight_norm()
|
847 |
+
|
848 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
849 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
850 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
851 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
852 |
+
z_p = self.flow(z, y_mask, g=g)
|
853 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
854 |
+
z, y_lengths, self.segment_size
|
855 |
+
)
|
856 |
+
o = self.dec(z_slice, g=g)
|
857 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
858 |
+
|
859 |
+
def infer(self, phone, phone_lengths, sid, rate=None):
|
860 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
861 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
862 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
863 |
+
if rate:
|
864 |
+
head = int(z_p.shape[2] * rate)
|
865 |
+
z_p = z_p[:, :, -head:]
|
866 |
+
x_mask = x_mask[:, :, -head:]
|
867 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
868 |
+
o = self.dec(z * x_mask, g=g)
|
869 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
870 |
+
|
871 |
+
|
872 |
+
class SynthesizerTrnMs768NSFsid_nono(nn.Module):
|
873 |
+
def __init__(
|
874 |
+
self,
|
875 |
+
spec_channels,
|
876 |
+
segment_size,
|
877 |
+
inter_channels,
|
878 |
+
hidden_channels,
|
879 |
+
filter_channels,
|
880 |
+
n_heads,
|
881 |
+
n_layers,
|
882 |
+
kernel_size,
|
883 |
+
p_dropout,
|
884 |
+
resblock,
|
885 |
+
resblock_kernel_sizes,
|
886 |
+
resblock_dilation_sizes,
|
887 |
+
upsample_rates,
|
888 |
+
upsample_initial_channel,
|
889 |
+
upsample_kernel_sizes,
|
890 |
+
spk_embed_dim,
|
891 |
+
gin_channels,
|
892 |
+
sr=None,
|
893 |
+
**kwargs
|
894 |
+
):
|
895 |
+
super().__init__()
|
896 |
+
self.spec_channels = spec_channels
|
897 |
+
self.inter_channels = inter_channels
|
898 |
+
self.hidden_channels = hidden_channels
|
899 |
+
self.filter_channels = filter_channels
|
900 |
+
self.n_heads = n_heads
|
901 |
+
self.n_layers = n_layers
|
902 |
+
self.kernel_size = kernel_size
|
903 |
+
self.p_dropout = p_dropout
|
904 |
+
self.resblock = resblock
|
905 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
906 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
907 |
+
self.upsample_rates = upsample_rates
|
908 |
+
self.upsample_initial_channel = upsample_initial_channel
|
909 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
910 |
+
self.segment_size = segment_size
|
911 |
+
self.gin_channels = gin_channels
|
912 |
+
# self.hop_length = hop_length#
|
913 |
+
self.spk_embed_dim = spk_embed_dim
|
914 |
+
self.enc_p = TextEncoder768(
|
915 |
+
inter_channels,
|
916 |
+
hidden_channels,
|
917 |
+
filter_channels,
|
918 |
+
n_heads,
|
919 |
+
n_layers,
|
920 |
+
kernel_size,
|
921 |
+
p_dropout,
|
922 |
+
f0=False,
|
923 |
+
)
|
924 |
+
self.dec = Generator(
|
925 |
+
inter_channels,
|
926 |
+
resblock,
|
927 |
+
resblock_kernel_sizes,
|
928 |
+
resblock_dilation_sizes,
|
929 |
+
upsample_rates,
|
930 |
+
upsample_initial_channel,
|
931 |
+
upsample_kernel_sizes,
|
932 |
+
gin_channels=gin_channels,
|
933 |
+
)
|
934 |
+
self.enc_q = PosteriorEncoder(
|
935 |
+
spec_channels,
|
936 |
+
inter_channels,
|
937 |
+
hidden_channels,
|
938 |
+
5,
|
939 |
+
1,
|
940 |
+
16,
|
941 |
+
gin_channels=gin_channels,
|
942 |
+
)
|
943 |
+
self.flow = ResidualCouplingBlock(
|
944 |
+
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
945 |
+
)
|
946 |
+
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
947 |
+
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
948 |
+
|
949 |
+
def remove_weight_norm(self):
|
950 |
+
self.dec.remove_weight_norm()
|
951 |
+
self.flow.remove_weight_norm()
|
952 |
+
self.enc_q.remove_weight_norm()
|
953 |
+
|
954 |
+
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
955 |
+
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
956 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
957 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
958 |
+
z_p = self.flow(z, y_mask, g=g)
|
959 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
960 |
+
z, y_lengths, self.segment_size
|
961 |
+
)
|
962 |
+
o = self.dec(z_slice, g=g)
|
963 |
+
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
964 |
+
|
965 |
+
def infer(self, phone, phone_lengths, sid, rate=None):
|
966 |
+
g = self.emb_g(sid).unsqueeze(-1)
|
967 |
+
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
968 |
+
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
969 |
+
if rate:
|
970 |
+
head = int(z_p.shape[2] * rate)
|
971 |
+
z_p = z_p[:, :, -head:]
|
972 |
+
x_mask = x_mask[:, :, -head:]
|
973 |
+
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
974 |
+
o = self.dec(z * x_mask, g=g)
|
975 |
+
return o, x_mask, (z, z_p, m_p, logs_p)
|
976 |
+
|
977 |
+
|
978 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
979 |
+
def __init__(self, use_spectral_norm=False):
|
980 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
981 |
+
periods = [2, 3, 5, 7, 11, 17]
|
982 |
+
# periods = [3, 5, 7, 11, 17, 23, 37]
|
983 |
+
|
984 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
985 |
+
discs = discs + [
|
986 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
987 |
+
]
|
988 |
+
self.discriminators = nn.ModuleList(discs)
|
989 |
+
|
990 |
+
def forward(self, y, y_hat):
|
991 |
+
y_d_rs = [] #
|
992 |
+
y_d_gs = []
|
993 |
+
fmap_rs = []
|
994 |
+
fmap_gs = []
|
995 |
+
for i, d in enumerate(self.discriminators):
|
996 |
+
y_d_r, fmap_r = d(y)
|
997 |
+
y_d_g, fmap_g = d(y_hat)
|
998 |
+
# for j in range(len(fmap_r)):
|
999 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1000 |
+
y_d_rs.append(y_d_r)
|
1001 |
+
y_d_gs.append(y_d_g)
|
1002 |
+
fmap_rs.append(fmap_r)
|
1003 |
+
fmap_gs.append(fmap_g)
|
1004 |
+
|
1005 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1006 |
+
|
1007 |
+
|
1008 |
+
class MultiPeriodDiscriminatorV2(torch.nn.Module):
|
1009 |
+
def __init__(self, use_spectral_norm=False):
|
1010 |
+
super(MultiPeriodDiscriminatorV2, self).__init__()
|
1011 |
+
# periods = [2, 3, 5, 7, 11, 17]
|
1012 |
+
periods = [2, 3, 5, 7, 11, 17, 23, 37]
|
1013 |
+
|
1014 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
1015 |
+
discs = discs + [
|
1016 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
1017 |
+
]
|
1018 |
+
self.discriminators = nn.ModuleList(discs)
|
1019 |
+
|
1020 |
+
def forward(self, y, y_hat):
|
1021 |
+
y_d_rs = [] #
|
1022 |
+
y_d_gs = []
|
1023 |
+
fmap_rs = []
|
1024 |
+
fmap_gs = []
|
1025 |
+
for i, d in enumerate(self.discriminators):
|
1026 |
+
y_d_r, fmap_r = d(y)
|
1027 |
+
y_d_g, fmap_g = d(y_hat)
|
1028 |
+
# for j in range(len(fmap_r)):
|
1029 |
+
# print(i,j,y.shape,y_hat.shape,fmap_r[j].shape,fmap_g[j].shape)
|
1030 |
+
y_d_rs.append(y_d_r)
|
1031 |
+
y_d_gs.append(y_d_g)
|
1032 |
+
fmap_rs.append(fmap_r)
|
1033 |
+
fmap_gs.append(fmap_g)
|
1034 |
+
|
1035 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
1036 |
+
|
1037 |
+
|
1038 |
+
class DiscriminatorS(torch.nn.Module):
|
1039 |
+
def __init__(self, use_spectral_norm=False):
|
1040 |
+
super(DiscriminatorS, self).__init__()
|
1041 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1042 |
+
self.convs = nn.ModuleList(
|
1043 |
+
[
|
1044 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
1045 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
1046 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
1047 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
1048 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
1049 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
1050 |
+
]
|
1051 |
+
)
|
1052 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
1053 |
+
|
1054 |
+
def forward(self, x):
|
1055 |
+
fmap = []
|
1056 |
+
|
1057 |
+
for l in self.convs:
|
1058 |
+
x = l(x)
|
1059 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1060 |
+
fmap.append(x)
|
1061 |
+
x = self.conv_post(x)
|
1062 |
+
fmap.append(x)
|
1063 |
+
x = torch.flatten(x, 1, -1)
|
1064 |
+
|
1065 |
+
return x, fmap
|
1066 |
+
|
1067 |
+
|
1068 |
+
class DiscriminatorP(torch.nn.Module):
|
1069 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
1070 |
+
super(DiscriminatorP, self).__init__()
|
1071 |
+
self.period = period
|
1072 |
+
self.use_spectral_norm = use_spectral_norm
|
1073 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
1074 |
+
self.convs = nn.ModuleList(
|
1075 |
+
[
|
1076 |
+
norm_f(
|
1077 |
+
Conv2d(
|
1078 |
+
1,
|
1079 |
+
32,
|
1080 |
+
(kernel_size, 1),
|
1081 |
+
(stride, 1),
|
1082 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1083 |
+
)
|
1084 |
+
),
|
1085 |
+
norm_f(
|
1086 |
+
Conv2d(
|
1087 |
+
32,
|
1088 |
+
128,
|
1089 |
+
(kernel_size, 1),
|
1090 |
+
(stride, 1),
|
1091 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1092 |
+
)
|
1093 |
+
),
|
1094 |
+
norm_f(
|
1095 |
+
Conv2d(
|
1096 |
+
128,
|
1097 |
+
512,
|
1098 |
+
(kernel_size, 1),
|
1099 |
+
(stride, 1),
|
1100 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1101 |
+
)
|
1102 |
+
),
|
1103 |
+
norm_f(
|
1104 |
+
Conv2d(
|
1105 |
+
512,
|
1106 |
+
1024,
|
1107 |
+
(kernel_size, 1),
|
1108 |
+
(stride, 1),
|
1109 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1110 |
+
)
|
1111 |
+
),
|
1112 |
+
norm_f(
|
1113 |
+
Conv2d(
|
1114 |
+
1024,
|
1115 |
+
1024,
|
1116 |
+
(kernel_size, 1),
|
1117 |
+
1,
|
1118 |
+
padding=(get_padding(kernel_size, 1), 0),
|
1119 |
+
)
|
1120 |
+
),
|
1121 |
+
]
|
1122 |
+
)
|
1123 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
1124 |
+
|
1125 |
+
def forward(self, x):
|
1126 |
+
fmap = []
|
1127 |
+
|
1128 |
+
# 1d to 2d
|
1129 |
+
b, c, t = x.shape
|
1130 |
+
if t % self.period != 0: # pad first
|
1131 |
+
n_pad = self.period - (t % self.period)
|
1132 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
1133 |
+
t = t + n_pad
|
1134 |
+
x = x.view(b, c, t // self.period, self.period)
|
1135 |
+
|
1136 |
+
for l in self.convs:
|
1137 |
+
x = l(x)
|
1138 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
1139 |
+
fmap.append(x)
|
1140 |
+
x = self.conv_post(x)
|
1141 |
+
fmap.append(x)
|
1142 |
+
x = torch.flatten(x, 1, -1)
|
1143 |
+
|
1144 |
+
return x, fmap
|