Spaces:
Runtime error
Runtime error
#%% | |
import streamlit as st | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import librosa | |
import pandas as pd | |
from src.st_helper import convert_df, show_readme, get_shift | |
from src.timbre_analysis import ( | |
spectral_centroid_analysis, | |
rolloff_frequency_analysis, | |
spectral_bandwidth_analysis, | |
harmonic_percussive_source_separation | |
) | |
st.title("Timbre Analysis") | |
#%% 頁面說明 | |
# show_readme("docs/6-Timbre Analysis.md") | |
#%% 上傳檔案區塊 | |
with st.expander("上傳檔案(Upload Files)"): | |
file = st.file_uploader("Upload your music library", type=["mp3", "wav", "ogg"]) | |
if file is not None: | |
st.audio(file, format="audio/ogg") | |
st.subheader("File information") | |
st.write(f"File name: `{file.name}`", ) | |
st.write(f"File type: `{file.type}`") | |
st.write(f"File size: `{file.size}`") | |
# 載入音檔 | |
y, sr = librosa.load(file, sr=44100) | |
st.write(f"Sample rate: `{sr}`") | |
duration = float(np.round(len(y)/sr-0.005, 2)) # 時間長度,取小數點後2位,向下取整避免超過音檔長度 | |
st.write(f"Duration(s): `{duration}`") | |
y_all = y | |
#%% | |
if file is not None: | |
### Start of 選擇聲音片段 ### | |
with st.expander("選擇聲音片段(Select a segment of the audio)"): | |
# 建立一個滑桿,可以選擇聲音片段,使用時間長度為單位 | |
start_time, end_time = st.slider("Select a segment of the audio", | |
0.0, duration, | |
(st.session_state.start_time, duration), | |
0.01 | |
) | |
st.session_state.start_time = start_time | |
st.write(f"Selected segment: `{start_time}` ~ `{end_time}`, duration: `{end_time-start_time}`") | |
# 根據選擇的聲音片段,取出聲音資料 | |
start_index = int(start_time*sr) | |
end_index = int(end_time*sr) | |
y_sub = y_all[start_index:end_index] | |
# 建立一個y_sub的播放器 | |
st.audio(y_sub, format="audio/ogg", sample_rate=sr) | |
# 計算y_sub所對應時間的x軸 | |
x_sub = np.arange(len(y_sub))/sr | |
### End of 選擇聲音片段 ### | |
tab1, tab2, tab3, tab4 = st.tabs(["Spectral Centroid", "Rolloff Frequency", "Spectral Bandwidth", "Harmonic Percussive Source Separation"]) | |
shift_time, shift_array = get_shift(start_time, end_time) # shift_array為y_sub的時間刻度 | |
# spectral_centroid_analysis | |
with tab1: | |
st.subheader("Spectral Centroid Analysis") | |
fig6_1, ax6_1, centroid_value = spectral_centroid_analysis(y_sub, sr, shift_array) | |
st.pyplot(fig6_1) | |
df_centroid = pd.DataFrame(centroid_value.T, columns=["Time(s)", "Centroid"]) | |
df_centroid["Time(s)"] = df_centroid["Time(s)"] + shift_time | |
st.dataframe(df_centroid, use_container_width=True) | |
st.download_button( | |
label="Download spectral centroid data", | |
data=convert_df(df_centroid), | |
file_name="centroid.csv", | |
mime="text/csv", | |
) | |
# rolloff_frequency_analysis | |
with tab2: | |
st.subheader("Rolloff Frequency Analysis") | |
roll_percent = st.selectbox("Select rolloff frequency", [0.90, 0.95, 0.99]) | |
fig6_2, ax6_2, rolloff_value = rolloff_frequency_analysis(y_sub, sr, roll_percent=roll_percent, shift_array=shift_array) | |
st.pyplot(fig6_2) | |
df_rolloff = pd.DataFrame(rolloff_value.T, columns=["Time(s)", "Rolloff", "Rolloff_min"]) | |
df_rolloff["Time(s)"] = df_rolloff["Time(s)"] + shift_time | |
st.dataframe(df_rolloff, use_container_width=True) | |
st.download_button( | |
label="Download rolloff frequency data", | |
data=convert_df(df_rolloff), | |
file_name="rolloff.csv", | |
mime="text/csv", | |
) | |
# spectral_bandwidth_analysis | |
with tab3: | |
st.subheader("Spectral Bandwidth Analysis") | |
fig6_3, ax6_3, bandwidth_value = spectral_bandwidth_analysis(y_sub, sr, shift_array) | |
st.pyplot(fig6_3) | |
df_bandwidth = pd.DataFrame(bandwidth_value.T, columns=["Time(s)", "Bandwidth"]) | |
df_bandwidth["Time(s)"] = df_bandwidth["Time(s)"] + shift_time | |
st.dataframe(df_bandwidth, use_container_width=True) | |
st.download_button( | |
label="Download spectral bandwidth data", | |
data=convert_df(df_bandwidth), | |
file_name="bandwidth.csv", | |
mime="text/csv", | |
) | |
# harmonic_percussive_source_separation | |
with tab4: | |
st.subheader("Harmonic Percussive Source Separation") | |
fig6_4, ax6_4, (Harmonic_data) = harmonic_percussive_source_separation(y_sub, sr, shift_array) | |
D, H, P, t = Harmonic_data | |
st.pyplot(fig6_4) | |
st.download_button( | |
label="Download Full power spectrogram data", | |
data=convert_df(pd.DataFrame(D)), | |
file_name="Full_power_spectrogram.csv", | |
use_container_width=True, | |
) | |
st.download_button( | |
label="Download Harmonic power spectrogram data", | |
data=convert_df(pd.DataFrame(H)), | |
file_name="Harmonic_power_spectrogram.csv", | |
use_container_width=True, | |
) | |
st.download_button( | |
label="Download Percussive power spectrogram data", | |
data=convert_df(pd.DataFrame(P)), | |
file_name="Percussive_power_spectrogram.csv", | |
use_container_width=True, | |
) | |
st.download_button( | |
label="Download Time data", | |
data=convert_df(pd.DataFrame(t+shift_time, columns=["Time(s)"])), | |
file_name="Time_scale.csv", | |
use_container_width=True, | |
) |