Spaces:
Runtime error
Runtime error
#%% | |
import streamlit as st | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import librosa | |
import pandas as pd | |
import seaborn as sns | |
from src.st_helper import convert_df, show_readme, get_shift | |
from src.chord_recognition import ( | |
plot_chord_recognition, | |
plot_binary_template_chord_recognition, | |
chord_table, | |
compute_chromagram, | |
chord_recognition_template, | |
plot_chord, | |
plot_user_chord | |
) | |
st.title("Chord Recognition") | |
#%% 頁面說明 | |
# show_readme("docs/1-Basic Information.md") | |
#%% 上傳檔案區塊 | |
with st.expander("上傳檔案(Upload Files)"): | |
file = st.file_uploader("Upload your music library", type=["mp3", "wav", "ogg"]) | |
if file is not None: | |
st.audio(file, format="audio/ogg") | |
st.subheader("File information") | |
st.write(f"File name: `{file.name}`", ) | |
st.write(f"File type: `{file.type}`") | |
st.write(f"File size: `{file.size}`") | |
# 載入音檔 | |
y, sr = librosa.load(file, sr=44100) | |
st.write(f"Sample rate: `{sr}`") | |
duration = float(np.round(len(y)/sr-0.005, 2)) # 時間長度,取小數點後2位,向下取整避免超過音檔長度 | |
st.write(f"Duration(s): `{duration}`") | |
y_all = y | |
#%% | |
if file is not None: | |
### Start of 選擇聲音片段 ### | |
with st.expander("選擇聲音片段(Select a segment of the audio)"): | |
# 建立一個滑桿,可以選擇聲音片段,使用時間長度為單位 | |
start_time, end_time = st.slider("Select a segment of the audio", | |
0.0, duration, | |
(st.session_state.start_time, duration), | |
0.01 | |
) | |
st.session_state.start_time = start_time | |
st.write(f"Selected segment: `{start_time}` ~ `{end_time}`, duration: `{end_time-start_time}`") | |
# 根據選擇的聲音片段,取出聲音資料 | |
start_index = int(start_time*sr) | |
end_index = int(end_time*sr) | |
y_sub = y_all[start_index:end_index] | |
# 建立一個y_sub的播放器 | |
st.audio(y_sub, format="audio/ogg", sample_rate=sr) | |
# 計算y_sub所對應時間的x軸 | |
x_sub = np.arange(len(y_sub))/sr | |
### End of 選擇聲音片段 ### | |
tab1, tab2, tab3, tab4 = st.tabs(["STFT Chroma", "Chords Result (Default)", "Chords Result (User)", "dev"]) | |
shift_time, shift_array = get_shift(start_time, end_time) # shift_array為y_sub的時間刻度 | |
# STFT Chroma | |
with tab1: | |
chroma, _, _, _, duration = compute_chromagram(y_sub, sr) | |
fig4_1, ax4_1 = plot_chord(chroma, "STFT Chroma") | |
st.pyplot(fig4_1) | |
with tab2: | |
_, chord_max = chord_recognition_template(chroma, norm_sim='max') | |
fig4_2, ax4_2 = plot_chord(chord_max, "Chord Recognition Result", cmap="crest", include_minor=True) | |
st.pyplot(fig4_2) | |
with tab3: | |
# 建立chord result dataframe | |
sec_per_frame = duration/chroma.shape[1] | |
chord_results_df = pd.DataFrame({ | |
"Frame": np.arange(chroma.shape[1]), | |
"Time(s)": np.arange(chroma.shape[1])*sec_per_frame + shift_time, | |
"Chord": chord_table(chord_max) | |
}) | |
fig4_1b, ax4_1b = plot_user_chord(chord_results_df) | |
st.pyplot(fig4_1b) | |
chord_results_df = st.experimental_data_editor( | |
chord_results_df, | |
use_container_width=True | |
) | |
# plot_binary_template_chord_recognition | |
with tab4: | |
st.subheader("plot_binary_template_chord_recognition") | |
fig4_4, ax4_4 = plot_binary_template_chord_recognition(y_sub, sr) | |
st.pyplot(fig4_4) | |