music-analysis / pages /2-Pitch_estimation.py
Keycatowo
init trans commit
bb5feba
#%%
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
import numpy as np
import librosa
import pandas as pd
import seaborn as sns
from src.st_helper import convert_df, show_readme, get_shift
from src.pitch_estimation import plot_mel_spectrogram, plot_constant_q_transform, pitch_class_type_one_vis, pitch_class_histogram_chroma
st.title("Pitch estimation")
#%% 頁面說明
# show_readme("docs/2-Pitch_estimation.md")
#%% 上傳檔案區塊
with st.expander("上傳檔案(Upload Files)"):
file = st.file_uploader("Upload your music library", type=["mp3", "wav", "ogg"])
if file is not None:
st.audio(file, format="audio/ogg")
st.subheader("File information")
st.write(f"File name: `{file.name}`", )
st.write(f"File type: `{file.type}`")
st.write(f"File size: `{file.size}`")
# 載入音檔
y, sr = librosa.load(file, sr=44100)
st.write(f"Sample rate: `{sr}`")
duration = float(np.round(len(y)/sr-0.005, 2)) # 時間長度,取小數點後2位,向下取整避免超過音檔長度
st.write(f"Duration(s): `{duration}`")
y_all = y
#%% 功能區塊
if file is not None:
### Start of 選擇聲音片段 ###
with st.expander("選擇聲音片段(Select a segment of the audio)"):
# 建立一個滑桿,可以選擇聲音片段,使用時間長度為單位
start_time, end_time = st.slider("Select a segment of the audio",
0.0, duration,
(st.session_state.start_time, duration),
0.01
)
st.session_state.start_time = start_time
st.write(f"Selected segment: `{start_time}` ~ `{end_time}`, duration: `{end_time-start_time}`")
# 根據選擇的聲音片段,取出聲音資料
start_index = int(start_time*sr)
end_index = int(end_time*sr)
y_sub = y_all[start_index:end_index]
# 建立一個y_sub的播放器
st.audio(y_sub, format="audio/ogg", sample_rate=sr)
# 計算y_sub所對應時間的x軸
x_sub = np.arange(len(y_sub))/sr
### End of 選擇聲音片段 ###
tab1, tab2, tab3, tab4 = st.tabs(["Mel-frequency spectrogram", "Constant-Q transform", "Chroma", "Pitch class"])
shift_time, shift_array = get_shift(start_time, end_time) # shift_array為y_sub的時間刻度
# Mel-frequency spectrogram
with tab1:
st.subheader("Mel-frequency spectrogram")
with_pitch = st.checkbox("Show pitch", value=True)
fig2_1, ax2_1 = plot_mel_spectrogram(y_sub, sr, shift_array, with_pitch)
st.pyplot(fig2_1)
# Constant-Q transform
with tab2:
st.subheader("Constant-Q transform")
fig2_2, ax2_2 = plot_constant_q_transform(y_sub, sr, shift_array)
st.pyplot(fig2_2)
# chroma
with tab3:
st.subheader("Chroma")
chroma = librosa.feature.chroma_stft(y=y_sub, sr=sr)
chroma_t = librosa.times_like(chroma, sr)
df_chroma = pd.DataFrame(chroma)
df_chroma_t = pd.DataFrame({"Time(s)": chroma_t})
df_chroma_t["Time(frame)"] = list(range(len(chroma_t)))
df_chroma_t["Time(s)"] = df_chroma_t["Time(s)"] + shift_time
df_chroma_t = df_chroma_t[["Time(frame)", "Time(s)"]]
fig2_3, ax2_3 = plt.subplots(figsize=(10, 4))
sns.heatmap(chroma, ax=ax2_3)
ax2_3.set_title("Chroma")
ax2_3.set_xlabel("Time(frame)")
ax2_3.invert_yaxis()
st.pyplot(fig2_3)
st.write("Chroma value")
st.dataframe(df_chroma, use_container_width=True)
st.download_button(
label="Download chroma",
data=convert_df(df_chroma),
file_name="chroma_value.csv",
)
st.write("Chroma time")
st.dataframe(df_chroma_t, use_container_width=True)
st.download_button(
label="Download chroma time",
data=convert_df(df_chroma_t),
file_name="chroma_time.csv",
)
# Pitch class type one
with tab4:
st.subheader("Pitch class(chroma)")
high_res = st.checkbox("High resolution", value=False)
fig2_4, ax2_4, df_pitch_class = pitch_class_histogram_chroma(y_sub, sr, high_res)
st.pyplot(fig2_4)
st.write(df_pitch_class)
st.download_button(
label="Download pitch class(chroma)",
data=convert_df(pd.DataFrame(df_pitch_class)),
file_name="Pitch_class(chroma).csv",
mime="text/csv",
)