Spaces:
Runtime error
Runtime error
#%% | |
import streamlit as st | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import librosa | |
import pandas as pd | |
from src.st_helper import convert_df, show_readme, get_shift | |
from src.basic_info import plot_waveform, signal_RMS_analysis | |
import os | |
os.environ[ 'NUMBA_CACHE_DIR' ] = '/tmp/' | |
st.title("Basic Information") | |
#%% 頁面說明 | |
# show_readme("docs/1-Basic Information.md") | |
#%% 上傳檔案區塊 | |
with st.expander("上傳檔案(Upload Files)"): | |
file = st.file_uploader("Upload your music library", type=["mp3", "wav", "ogg"]) | |
if file is not None: | |
st.audio(file, format="audio/ogg") | |
st.subheader("File information") | |
st.write(f"File name: `{file.name}`", ) | |
st.write(f"File type: `{file.type}`") | |
st.write(f"File size: `{file.size}`") | |
# 載入音檔 | |
y, sr = librosa.load(file, sr=44100) | |
st.write(f"Sample rate: `{sr}`") | |
duration = float(np.round(len(y)/sr-0.005, 2)) # 時間長度,取小數點後2位,向下取整避免超過音檔長度 | |
st.write(f"Duration(s): `{duration}`") | |
y_all = y | |
#%% | |
if file is not None: | |
### Start of 選擇聲音片段 ### | |
with st.expander("選擇聲音片段(Select a segment of the audio)"): | |
# 建立一個滑桿,可以選擇聲音片段,使用時間長度為單位 | |
start_time, end_time = st.slider("Select a segment of the audio", | |
0.0, duration, | |
(st.session_state.start_time, duration), | |
0.01 | |
) | |
st.session_state.start_time = start_time | |
st.write(f"Selected segment: `{start_time}` ~ `{end_time}`, duration: `{end_time-start_time}`") | |
# 根據選擇的聲音片段,取出聲音資料 | |
start_index = int(start_time*sr) | |
end_index = int(end_time*sr) | |
y_sub = y_all[start_index:end_index] | |
# 建立一個y_sub的播放器 | |
st.audio(y_sub, format="audio/ogg", sample_rate=sr) | |
# 計算y_sub所對應時間的x軸 | |
x_sub = np.arange(len(y_sub))/sr | |
### End of 選擇聲音片段 ### | |
tab1, tab2, tab3, tab4, tab5 = st.tabs([ | |
"Waveform(mathplotlib)", | |
"Waveform(plotly)", | |
"signal_RMS_analysis", | |
"Spectrogram", | |
"Download RMS data"]) | |
shift_time, shift_array = get_shift(start_time, end_time) # shift_array為y_sub的時間刻度 | |
# 繪製聲音波形圖 | |
with tab1: | |
st.subheader("Waveform(mathplotlib)") | |
fig1_1, ax_1_1 = plt.subplots() | |
ax_1_1.plot(x_sub + shift_time, y_sub) | |
ax_1_1.set_xlabel("Time(s)") | |
ax_1_1.set_ylabel("Amplitude") | |
ax_1_1.set_title("Waveform") | |
st.pyplot(fig1_1) | |
# 繪製聲音波形圖 | |
with tab2: | |
st.subheader("Waveform(plotly)") | |
fig1_2 = go.Figure(data=go.Scatter(x=x_sub + shift_time, y=y_sub)) | |
fig1_2.update_layout( | |
title="Waveform", | |
xaxis_title="Time(s)", | |
yaxis_title="Amplitude", | |
) | |
st.plotly_chart(fig1_2) | |
# 繪製聲音RMS圖 | |
with tab3: | |
st.subheader("signal_RMS_analysis") | |
fig1_3, ax1_3, times, rms = signal_RMS_analysis(y_sub, shift_time=shift_time) | |
st.pyplot(fig1_3) | |
# 繪製聲音Spectrogram圖(使用librosa繪製) | |
with tab4: | |
st.subheader("Spectrogram") | |
stft = librosa.stft(y_sub) | |
stft_db = librosa.amplitude_to_db(abs(stft)) | |
# add a figure | |
fig1_4, ax1_4 = plt.subplots() | |
librosa.display.specshow(stft_db, x_axis='time', y_axis='log', sr=sr, ax=ax1_4) | |
ax1_4.set_xticks(shift_array - shift_array[0], | |
shift_array) | |
ax1_4.autoscale() | |
ax1_4.set_xlabel("Time(s)") | |
st.pyplot(fig1_4) | |
# 下載RMS資料 | |
with tab5: | |
st.subheader("Download RMS data") | |
col1, col2 = st.columns(2) | |
with col1: | |
rms_df = pd.DataFrame({"Time(s)": times, "RMS": rms[0,:]}) | |
st.dataframe(rms_df, use_container_width=True) | |
with col2: | |
st.download_button( | |
"Doanload RMS data", | |
convert_df(rms_df), | |
"rms.csv", | |
"text/csv", | |
key="download-csv" | |
) | |
# %% | |