Spaces:
Runtime error
Runtime error
File size: 9,776 Bytes
bb5feba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import numpy as np
import os, sys, librosa
from scipy import signal
from matplotlib import pyplot as plt
import matplotlib
import matplotlib.gridspec as gridspec
import IPython.display as ipd
import pandas as pd
from numba import jit
import libfmp.b
import libfmp.c2
import libfmp.c3
import libfmp.c4
import libfmp.c6
import libfmp
from libfmp.b import FloatingBox
from numpy import typing as npt
import typing
@jit(nopython=True)
def compute_sm_dot(X, Y):
"""Computes similarty matrix from feature sequences using dot (inner) product
Notebook: C4/C4S2_SSM.ipynb
Args:
X (np.ndarray): First sequence
Y (np.ndarray): Second Sequence
Returns:
S (float): Dot product
"""
S = np.dot(np.transpose(X), Y)
return S
def plot_feature_ssm(X, Fs_X, S, Fs_S, ann, duration, color_ann=None,
title='', label='Time (seconds)', time=True,
figsize=(5, 6), fontsize=10, clim_X=None, clim=None):
"""Plot SSM along with feature representation and annotations (standard setting is time in seconds)
Notebook: C4/C4S2_SSM.ipynb
Args:
X: Feature representation
Fs_X: Feature rate of ``X``
S: Similarity matrix (SM)
Fs_S: Feature rate of ``S``
ann: Annotaions
duration: Duration
color_ann: Color annotations (see :func:`libfmp.b.b_plot.plot_segments`) (Default value = None)
title: Figure title (Default value = '')
label: Label for time axes (Default value = 'Time (seconds)')
time: Display time axis ticks or not (Default value = True)
figsize: Figure size (Default value = (5, 6))
fontsize: Font size (Default value = 10)
clim_X: Color limits for matrix X (Default value = None)
clim: Color limits for matrix ``S`` (Default value = None)
Returns:
fig: Handle for figure
ax: Handle for axes
"""
cmap = libfmp.b.compressed_gray_cmap(alpha=-10)
fig, ax = plt.subplots(3, 3, gridspec_kw={'width_ratios': [0.1, 1, 0.05],
'wspace': 0.2,
'height_ratios': [0.3, 1, 0.1]},
figsize=figsize)
libfmp.b.plot_matrix(X, Fs=Fs_X, ax=[ax[0, 1], ax[0, 2]], clim=clim_X,
xlabel='', ylabel='', title=title)
ax[0, 0].axis('off')
libfmp.b.plot_matrix(S, Fs=Fs_S, ax=[ax[1, 1], ax[1, 2]], cmap=cmap, clim=clim,
title='', xlabel='', ylabel='', colorbar=True)
ax[1, 1].set_xticks([])
ax[1, 1].set_yticks([])
libfmp.b.plot_segments(ann, ax=ax[2, 1], time_axis=time, fontsize=fontsize,
colors=color_ann,
time_label=label, time_max=duration*Fs_X)
ax[2, 2].axis('off')
ax[2, 0].axis('off')
libfmp.b.plot_segments(ann, ax=ax[1, 0], time_axis=time, fontsize=fontsize,
direction='vertical', colors=color_ann,
time_label=label, time_max=duration*Fs_X)
return fig, ax
def SSM_chorma(wav_fn:str, anno_fn: str, hop_size: int = 4096, Nfft: int = 1024) -> None :
x, fs = librosa.load(wav_fn)
duration= (x.shape[0])/fs
chromagram = librosa.feature.chroma_stft(y=x, sr=fs, tuning=0, norm=2, hop_length=hop_size, n_fft=Nfft)
X, Fs_X = libfmp.c3.smooth_downsample_feature_sequence(chromagram, fs/hop_size, filt_len=41, down_sampling=10)
# According to the documentation
ann, color_ann = libfmp.c4.read_structure_annotation(os.path.join(anno_fn), fn_ann_color=anno_fn)
ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
X = libfmp.c3.normalize_feature_sequence(X, norm='2', threshold=0.001)
S = compute_sm_dot(X,X)
fig, ax = plot_feature_ssm(X, 1, S, 1, ann_frames, duration*Fs_X, color_ann=color_ann,
clim_X=[0,1], clim=[0,1], label='Time (frames)',
title='Chroma feature (Fs=%0.2f)'%Fs_X)
return fig, ax
def plot_self_similarity(y_ref: npt.ArrayLike, sr: int, affinity: bool = False, hop_length: int = 1024) -> None:
'''
To visualize the similarity matrix of the signal
y_ref: reference signal
y_comp: signal to be compared
sr: sampling rate
affinity: to use affinity or not
hop_size
'''
# Pre-processing stage
chroma = librosa.feature.chroma_cqt(y=y_ref, sr=sr, hop_length=hop_length)
chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
fig, ax = plt.subplots()
if not affinity:
R = librosa.segment.recurrence_matrix(chroma_stack, k=5)
imgsim = librosa.display.specshow(R, x_axis='s', y_axis='s',
hop_length=hop_length)
plt.title('Binary recurrence (symmetric)')
plt.colorbar()
else:
R_aff = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine',mode='affinity')
imgaff = librosa.display.specshow(R_aff, x_axis='s', y_axis='s',
cmap='magma_r', hop_length=hop_length)
plt.title('Affinity recurrence')
plt.colorbar()
return fig, ax
@jit(nopython=True)
def compute_kernel_checkerboard_gaussian(L: int =10 , var: float = 0.5, normalize=True) -> npt.ArrayLike:
"""Compute Guassian-like checkerboard kernel [FMP, Section 4.4.1].
See also: https://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/
Notebook: C4/C4S4_NoveltySegmentation.ipynb
Args:
L (int): Parameter specifying the kernel size M=2*L+1
var (float): Variance parameter determing the tapering (epsilon) (Default value = 1.0)
normalize (bool): Normalize kernel (Default value = True)
Returns:
kernel (np.ndarray): Kernel matrix of size M x M
"""
taper = np.sqrt(1/2) / (L * var)
axis = np.arange(-L, L+1)
gaussian1D = np.exp(-taper**2 * (axis**2))
gaussian2D = np.outer(gaussian1D, gaussian1D)
kernel_box = np.outer(np.sign(axis), np.sign(axis))
kernel = kernel_box * gaussian2D
if normalize:
kernel = kernel / np.sum(np.abs(kernel))
return kernel
def compute_novelty_ssm(S, kernel: npt.ArrayLike = None, L: int = 10, var: float = 0.5, exclude: bool =False) -> npt.ArrayLike:
"""Compute novelty function from SSM [FMP, Section 4.4.1]
Notebook: C4/C4S4_NoveltySegmentation.ipynb
Args:
S (np.ndarray): SSM
kernel (np.ndarray): Checkerboard kernel (if kernel==None, it will be computed) (Default value = None)
L (int): Parameter specifying the kernel size M=2*L+1 (Default value = 10)
var (float): Variance parameter determing the tapering (epsilon) (Default value = 0.5)
exclude (bool): Sets the first L and last L values of novelty function to zero (Default value = False)
Returns:
nov (np.ndarray): Novelty function
"""
if kernel is None:
kernel = compute_kernel_checkerboard_gaussian(L=L, var=var)
N = S.shape[0]
M = 2*L + 1
nov = np.zeros(N)
# np.pad does not work with numba/jit
S_padded = np.pad(S, L, mode='constant')
for n in range(N):
# Does not work with numba/jit
nov[n] = np.sum(S_padded[n:n+M, n:n+M] * kernel)
if exclude:
right = np.min([L, N])
left = np.max([0, N-L])
nov[0:right] = 0
nov[left:N] = 0
return nov
def SSM_Novelty(wav_filename:str, anno_csv_filename: str) -> None :
float_box = libfmp.b.FloatingBox()
fn_wav = os.path.join(wav_filename)
ann, color_ann = libfmp.c4.read_structure_annotation(os.path.join(anno_csv_filename),
fn_ann_color=anno_csv_filename)
S_dict = {}
Fs_dict = {}
x, x_duration, X, Fs_X, S, I = libfmp.c4.compute_sm_from_filename(fn_wav,
L=11, H=5, L_smooth=1, thresh=1)
S_dict[0], Fs_dict[0] = S, Fs_X
ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
fig, ax = libfmp.c4.plot_feature_ssm(X, 1, S, 1, ann_frames, x_duration*Fs_X,
label='Time (frames)', color_ann=color_ann, clim_X=[0,1], clim=[0,1],
title='Feature rate: %0.0f Hz'%(Fs_X), figsize=(4.5, 5.5))
float_box.add_fig(fig)
x, x_duration, X, Fs_X, S, I = libfmp.c4.compute_sm_from_filename(fn_wav,
L=41, H=10, L_smooth=1, thresh=1)
S_dict[1], Fs_dict[1] = S, Fs_X
ann_frames = libfmp.c4.convert_structure_annotation(ann, Fs=Fs_X)
fig, ax = libfmp.c4.plot_feature_ssm(X, 1, S, 1, ann_frames, x_duration*Fs_X,
label='Time (frames)', color_ann=color_ann, clim_X=[0,1], clim=[0,1],
title='Feature rate: %0.0f Hz'%(Fs_X), figsize=(4.5, 5.5))
float_box.add_fig(fig)
float_box.show()
figsize=(10,6)
L_kernel_set = [5, 10, 20, 40]
num_kernel = len(L_kernel_set)
num_SSM = len(S_dict)
fig, ax = plt.subplots(num_kernel, num_SSM, figsize=figsize)
for s in range(num_SSM):
for t in range(num_kernel):
L_kernel = L_kernel_set[t]
S = S_dict[s]
nov = compute_novelty_ssm(S, L=L_kernel, exclude=True)
fig_nov, ax_nov, line_nov = libfmp.b.plot_signal(nov, Fs = Fs_dict[s],
color='k', ax=ax[t,s], figsize=figsize,
title='Feature rate = %0.0f Hz, $L_\mathrm{kernel}$ = %d'%(Fs_dict[s],L_kernel))
libfmp.b.plot_segments_overlay(ann, ax=ax_nov, colors=color_ann, alpha=0.1,
edgecolor='k', print_labels=False)
plt.tight_layout()
plt.show()
|